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The strong light scattering of a nematic liquid crystal is not necessarily only the result of director fluctua-
tions. The director modes are just two of the five fluctuating modes of a nematic liquid crystal. The other three
modes may also show strong scattering, comparable to or even larger than those of the director modes, in the
vicinities of the certain critical and multicritical points obtainable in a nematic liquid crystal. We calculate in
a unified approach and within a mean-field approximation the strength of the fluctuations of all five modes in
a variety of circumstances, including critical, tricritical, and Landau multicritical points. Important information
regarding these phase transitions can be learned by observing all five modes.@S1063-651X~96!12211-X#

PACS number~s!: 61.30.Eb, 64.70.Md, 83.70.Jr

I. INTRODUCTION

The macroscopic order parameter associated with the ori-
entational ordering of a liquid crystal is normally taken to be
the anisotropic part of the dielectric tensor@1#. This tensor,
being traceless and symmetric, has five independent compo-
nents, all of which fluctuate about their equilibrium values at
finite temperature. Usually, however, one focuses on the
fluctuations of just two of these five components, the two
transverse director modes. In the case of light scattering the
contributions from the director fluctuations do indeed tend to
dominate those of the other modes. However, there are well-
known polarization rules for the light scattering from direc-
tor modes that may be employed to block the director scat-
tering and then allow one to observe the scattering from the
other three modes. There is valuable information to be
gained from the study of these other modes, particularly in
the vicinity of phase transitions where they may exhibit pre-
transitional fluctuations comparable in magnitude to those of
the director modes. Such transitions include, for example,
changes in the type of orientational ordering as well as tran-
sitions from a nematic or even a chiral nematic liquid crystal
to one of the various smectic phases.

This paper will present the results of calculations of the
temperature dependences of the fluctuation strengths of all
five modes at various transitions that involve changes in ho-
mogeneous orientational order only. We exclude from the
present discussion, therefore, the very interesting but more
complicated chiral nematic phases and blue phases, as well
as all of the smectic phases. We will consider transitions
from one type of nematic phase to another or from an iso-
tropic phase to a nematic phase. There are several such tran-
sitions, related to the fact that there are nematic phases of
three different types: uniaxial positive, uniaxial negative, and
biaxial @1,2,3#. Associated with the various transitions are
different types of critical or multicritical points. For ex-
ample, there can be two lines of critical points separating the
biaxial phase from the two types of uniaxial nematic phases
with these lines merging and terminating at a special multi-
critical point also known as a Landau point@1,3,4#. Other
types of critical points are found in the presence of an ap-
plied field; depending upon the sign of the coupling constant,
one can have either an ordinary critical point@5–8# or else a

tricritical point followed by a line of critical points@9#.
The experimental realization of many of these critical or

multicritical points has come about only fairly recently
@4,10–12#. Likewise, the observation of critical opalescence
within the nematic phase, as opposed to just within the iso-
tropic phase, is fairly new@13,14#. It seemed timely, there-
fore, to undertake the systematic development of a theory of
the fluctuations of a nematic liquid crystal in all these cir-
cumstances. In an earlier work it was shown how the light
scattering could be calculated for two different geometries
appropriate to a specific experiment@13#. Here we give the
general methods of doing these calculations and apply them
to the vicinities of all the above types of critical and multi-
critical points. Although we will make some comments on
light scattering, our emphasis in this paper will be more on
the zero-wave-vector limit of the critical phenomena.

The method we use is an application of the Landau–de
Gennes free energy, which has already been so successful in
describing the fluctuations of the five modes in the isotropic
liquid on its approach toward the nematic phase@1,15,16#.
We extend these calculations to include the fluctuations
within the nematic phases, as well as the effects of external
fields upon the fluctuations in both the isotropic and the nem-
atic regions. In our approach the nematic order parameter is
always treated as a five component object. The wide variety
of critical phenomena displayed by nematic liquid crystals is
in fact attributable to this multicomponent nature of the order
parameter. One of the main advantages of the present ap-
proach is that it allows one to treat the fluctuations of the
various modes on an equal footing and thus compare their
relative importance.

The behaviors of the five different modes prove to be
quite varied and interesting. For any given transition there
are usually three different types of mode behavior. First of
all, there will be at least one mode that ‘‘goes critical,’’ that
is, one whose associated light scattering atq50 diverges at
the phase transition. From this divergence one extracts a
critical exponent for a susceptibility~although in one impor-
tant case we shall see that a different exponent is measured!.
Second, there will usually be one or more Goldstone modes,
whose scattering atq50 diverges not only at the phase tran-
sition, but throughout the entire condensed phase as well. An
applied field can quench the fluctuations of such a mode, but,
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as we shall see, this suppression is normally not very effec-
tive even for rather large fields. Third, from the remaining of
the five modes, there will be one or more that are neither
Goldstone nor critical modes and whose scattering does not
diverge. Although one might suppose that the behavior of
these modes are unremarkable, they often are just as inter-
esting as the other modes, if not more so. Some show the
most rapid changes of all the modes on the approach to a
critical or multicritical point and provide the best means of
locating such points. Others exhibit singular~but nondiverg-
ing! behavior at a critical point, allowing one to determine
additional critical exponents, such as that of the coexistence
curve.

In the next section we outline our methods and notation.
The following several sections discuss individually the vari-
ous types of critical and multicritical phase transitions that
one finds in a nematic liquid crystal and the temperature
dependences of their associated modes of fluctuation.

II. OUTLINE OF NOTATION AND METHODS

A. Notation

As is usual, we take our order parameter to be the aniso-
tropic part of the dielectric tensor

Qab5eab2 1
3 eggdab . ~1!

Light scattering takes place when this quantity fluctuates.
SinceQab is both symmetric and traceless, it has just five
independent components and can be written as@17#
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The normalizations are chosen such that we have a simple
form for the quadratic invariant

QabQba5Q21P1
21P2

21Rx
21Ry

2, ~3!

where, as usual, repeated greek indices are summed over.
For the magnitudes of the five components of the order

parameter we have usedP, Q, andR with subscripts to dis-
tinguish the components that are qualitatively similar to each
other. For a liquid crystal that is optically uniaxial with the
optic axis oriented along thez direction,Q is the usual order
parameter indicating the optical anisotropy and theP’s and
R’s are zero on the average. Any fluctuations inQ about its
average value describe changes in thedegreeof molecular
ordering.

The P coefficients take on nonzero average values if the
liquid crystal becomes optically biaxial. A biaxial nematic
has another director field associated with a second
symmetry-breaking direction. If this new director makes an
anglec with respect to thex axis, then theP components are
given by P15P cos2c and P25P sin2c, where P is the
magnitudeof the biaxiality.P1 is maximal andP2 zero when
the new symmetry direction lies along either thex or y axis.

Variations ofP1 in this case would represent fluctuations in
the degree of biaxiality, while changes inP2 would be due to
fluctuations of the new director. The roles ofP1 andP2 are
reversed if the symmetry-breaking direction is at 45° to thex
or y axis; P2 is then maximal, whileP1 is zero. For an
arbitrary orientation of the new symmetry breaking direction,
both P1 andP2 are nonzero. In this work we shall assume
thatP>0 andc50, so thatP1>0 andP250 on the average.

We useR’s for the remaining two order parameter com-
ponents partly to preserve alphabetical order, but also to re-
mind us that they representrotationsof the uniaxial director.
If this director should tilt slightly in thex direction,Rx will
become nonzero to first order in the tilt angle and, similarly,
Ry becomes nonzero for a tilt toward they axis. ~The P
components will also become nonzero, but only to second
order in the tilt.! Variations in theR’s therefore represent
director fluctuations. Some authors refer to theR andQ fluc-
tuations as, respectively, ‘‘transverse’’ and ‘‘longitudinal’’
@18#. But since theP fluctuations also have transverse and
longitudinal senses, we prefer not to use these designations.

Fluctuations in the above quantities are easily detected by
light scattering.I (q), the intensity of light with scattering
wave vectorq, is proportional tô u i adQ̃ab(q) f bu2&, where
dQ̃ab(q) is the q transform of theab component of the
order parameter of Eq.~2! andi a and f b are, respectively, the
polarization vectors of the incident and scattered light@1#.
Thus, to see the mean-square fluctuations ofRx , thezx or xz
component ofQab , one should haveî oriented alongz and f̂
alongx or vice versa. A similar result holds forRy , with y
replacingx in the above. These geometries are the standard
way of looking at director fluctuations: with one polarization
vector parallel to the director and the other perpendicular. If
both polarization vectors are parallel to the director one will
see fluctuations inQ, the zz component ofQab . Having
î oriented alongx and f̂ alongy or vice versa is the way to
see fluctuations inP2. The last two possibilities, having both
polarizers oriented along thex direction or both alongy,
gives a mixed result. One then sees fluctuations in the square
of Q1P1 or of Q2P1, respectively. IfQ andP1 are inde-
pendent normal modes, as they are in many of the cases
discussed below, then the average of the cross term is zero
and one sees the average ofQ21P 1

2 in both cases. One can
then extract the average ofP1

2 if theQ fluctuations have been
independently determined. If, however,Q and P1 are not
independent normal modes, the analysis is more complex.

B. Methods

To calculate the fluctuation effects we use the standard
Landau–de Gennes free-energy density

F5 1
2AQabQba1 1

2L1Qab,gQba,g1 1
2L2Qab,bQag,g

2A 2
3BQabQbgQga1 1

4C~QabQba!2

2A 3
2xaQabHaHb . ~4!

HereHa is an external field~magnetic or electric! andxa is
the anisotropic coupling constant associated with this field.
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The choice of numerical coefficients has been made so as to
simplify some of the ensuing equations. As usual,A
is assumed to have a linear temperature dependence
A5A0(T2T* ) and all the other coefficients are treated as
constants. To obtain a more correct description of the tem-
perature variation of the order parameter throughout a wide
range of temperatures one should also assign temperature
dependences to theB andC coefficients, but this refinement
will not affect the nature of the critical behaviors that are the
focus of the following sections and so will not be included.
One important exception to the above, which will be dis-
cussed separately in Sec. VII, is the vicinity of the Landau
multicritical point where the coefficientB changes sign.

In order to reduce the number of relevant parameters as
much as possible, it is convenient to perform a scaling of
variables such thatQab is measured in units ofB/C, F in
units ofB4/C3, andxaH

2 in units ofB3/C2. This leads to the
reduced expression

F5 1
2 tQabQba1 1

2 l 1
2Qab,gQba,g1 1

2 l 2
2Qab,bQag,g

2A 2
3QabQbgQga1 1

4 ~QabQba!22A3
2xaQabHaHb .

~5!

In the above we have defined a reduced temperature
t[AC/B2 and coherence lengthsl 1,2, where (l 1,2)

2

[L1,2C/B
2.

The standard method for computing the fluctuations in the
isotropic phase in the absence of a field, whereQab is zero,
is to retain only the quadratic terms of Eq.~5! and to apply
the equipartition theorem to this harmonic approximation. In
the nematic phase and/or in the presence of a field, where
Qab is not zero, we likewise employ a harmonic approxima-
tion, although the procedure is somewhat more complex.
First we must findQ ab

(0)[^Qab&, the average value ofQab ,
and then expand Eq.~5! out to second order indQab , the
deviations ofQab from this average. Thus we have

Qab~r !5Qab
~0!1dQab~r ! ~6!

and

F„Qab~r !…5F~Qab
~0!!1F2„dQab~r !…, ~7!

whereF2 is second order in thedQab’s, all linear terms
being absent sinceF evaluated atQab

~0! is by definition a
minimum with respect to variations ofdQab . This procedure
is indicated schematically in Fig. 1.

In order to findQab
~0! we first substitute Eq.~2! into Eq.~5!,

omitting the gradient terms, to obtain

F5 1
2 t~Q

21P1
21P2

21Rx
21Ry

2!2 1
3Q

31Q~P1
21P2

2!

2 1
2Q~Rx

21Ry
2!2 )

2 P1~Rx
22Ry

2!2)P2RxRy

1 1
4 ~Q21P1

21P2
21Rx

21Ry
2!22hQ, ~8!

and then we must find theQ, P’s, andR’s that minimizeF.
Since the free energy is fully rotationally invariant, there
will, in general, be an infinite number of solutions to this
minimization problem corresponding to all the possible ways
of orienting the coordinate axes with respect to the principle
axes of the order parameter tensor. To simplify the analysis it

will therefore be useful at the start to have the coordinate
axes aligned with the principle axes as well as with any
external fields so that as many components of order param-
eter as possible will be identically zero. For this reason, in
deriving Eq.~8! above we have assumed thatHa is along the
z direction, with the result that it only couples to theQ
component. For further convenience we have also introduced
a reduced fieldh defined byh5xaH

2.
Next, to findF2, we putQab

~0! back into Eq.~8! with the
gradient terms restored and expand to second order in the
dQab’s. Because of the gradient terms, it is easiest to find
expressions for the average fluctuations of the Fourier trans-
forms of thedQab’s, which are the quantities actually mea-
sured by light-scattering experiments.

In the next several sections we illustrate the application of
these methods to the varieties of critical points mentioned in
the Introduction. First, however, in Sec. III we study a more
familiar case: the ordinary isotropic-nematic transition in the
absence of any field. As it is well known, this transition is
first order, but weakly so, and has some features resembling
those of second-order transitions. It will be especially inter-
esting to see how those features evolve toward full-fledged
critical or multicritical behavior as we approach the various
types of critical points discussed in Secs. IV–VII.

III. THE ISOTROPIC-NEMATIC TRANSITION

A. Review of the phase transition properties
and ‘‘critical’’ exponents

For the uniaxial nematic aligned along thez axis ~that is,
with P15P25Rx5Ry50! Eq. ~8! reduces to the simpler
and more familiar free-energy expression

F5 1
2 tQ

22 1
3Q

31 1
4Q

42hQ. ~9!

Before calculating the strengths of the fluctuations of the five
modes, we first review and summarize the predictions stem-
ming from the free-energy expression of Eq.~9!, particularly
for the field-free case. Although some of these results already
appear several places in the literature, others do not to our

FIG. 1. Schematic of the free-energy surface at a temperature
just below the first-order isotropic-nematic phase transition. The
dotted lines are harmonic approximations to the two local minima,
the higher left-hand one corresponding to a metastable isotropic
phase at this temperature and the right-hand one to a thermody-
namically stable nematic phase. The abscissa represents five coor-
dinates, the independent components of theQab order parameter
tensor.
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knowledge. Minimization of this equation gives the follow-
ing cubic equation that must be solved to obtainQ0, the
equilibrium value ofQ:

05tQ2Q21Q32h. ~10!

For the field-free case~h50! there is a first-order phase tran-
sition at a temperatureTc , corresponding to a reduced tem-
peraturet5 2

9, and the relevant solutions to Eq.~10! are

Q0~ t !5H 0, t. 2
9 ~11a!

1
2 ~11A124t !, t, 2

9 . ~11b!

The susceptibilities above and below this transition are given
by

]Q

]h
~ t !55

1

t
, t. 2

9 ~12a!

2

124t1A124t
, t, 2

9 . ~12b!

The specific heat~in suitably reduced units! obtained from
Eq. ~9! is given by

Ch~ t !5H 0, t. 2
9 ~13a!

1

2 S 11
1

A124t
D , t, 2

9 . ~13b!

The mean-field predictions of Eqs.~11!–~13! contain singu-
larities that imply a certain set of critical exponents for this
transition. There is not critical behavior in the usual sense
since the full singular behavior is interrupted by the first-
order transition. Also related to this first-order character is
the fact that the effective critical temperature, as well as the
set of critical exponents, are different on the two sides of the
phase transition.

We review first the behavior as seen from the isotropic
side of the transition. From Eq.~12a!, we see that the sus-
ceptibility diverges att50 or, to be more accurate, would
diverge at this point if it were not interceded by a first-order
transition at t52

9 ~i.e., T5Tc!. Thus the effective critical
temperature seen from above the transition ist50 or, equiva-
lently, T5T* . Since the susceptibility divergeslinearly as
this point is approached, the mean-field prediction for the
corresponding critical exponent isg51. This is probably the
best known of the mean-field predictions and is followed
quite accurately by nearly all measurements made to date.
We also see from Eq.~12a! thata50 since there is no pre-
dicted divergence in the specific heat aboveTc . ~We do not
consider here the inclusion of fluctuation effects that could
produce an exponenta.0, in better agreement with experi-
ment.!

As seen from the nematic side of the transition, the sus-
ceptibility and the specific heat would diverge att5 1

4, ac-
cording to Eqs.~12b! and ~13b!. The effective critical tem-
perature, which we callT** , is therefore closer toTc ~t52

9!
than isT* ~t50! by a factor of 8. Nonetheless, because of
the presence of ‘‘background’’ terms, it is harder to see the
critical anomalies in the nematic than in the isotropic phase,
where there is no such background. For example, the specific

heat of Eq.~13b! has a constant plus an inverse square root
divergence~implying a critical exponent ofa851

2!. At the
transition the singular part is only three times larger than the
constant background. The situation is similar for the suscep-
tibility. Equation ~12b! has a linear plus a square-root diver-
gence, the latter of which becomes the dominant singularity
at T** ~implying a critical exponent ofg51

2!. But at the
transition there is again this three-to-one ratio between these
two contributions making it difficult to clearly discern the
g51

2 exponent. Finally, from Eq.~11b! we see that the order
parameter has a square-root dependence nearT** , corre-
sponding to a critical exponentb51

2. However, the order
parameter does not go to zero atT** , but to a finite or
background value of12.

All in all, the critical behavior of this transition is uncon-
ventional to say the least. With the results quoted above it is
clear that the scaling relationsa12b1g52 and
a812b1g852 are satisfied, but the hyperscaling equations
a5a8 andg5g8 are not. Perhaps we should not expect any
more of a first-order transition where, it could be argued,
scaling ideas need not apply in the first case. However, as we
have already stressed, this first-order transition can be
brought through a variety of means to several different types
of second-order transitions where scaling expectationsmust
then hold. One of the things that will be interesting to see in
the next several sections is how the unconventional behavior
of this first-order transition evolves into the conventional as
the various fields that produce true critical behavior are ap-
plied.

B. Calculation of the fluctuations

We return now to the calculation of the formulas for the
fluctuations of the five modes, which, as we shall see, mimic
the results of Eqs.~11!–~13! for the critical singularities.
First we substitute Eq.~6! into Eq. ~5! and keep terms up to
second order indQab . Then, as discussed previously, we
switch to momentum representation by expressing the fluc-
tuations of the order parameter in terms of its Fourier ampli-
tudes

dQab~r !5(
qW

dQ̃ab~q!eiq•r1c.c. ~14!

Thus, forF2, found by integrating the fluctuation part of the
free-energy density over all space, viz.,F25*F2dr , we ob-
tain

F25(
q

$ 1
2 ~ t22Q013Q0

21 l 1
2q2!udQ̃~q!u2

1 1
2 ~ t12Q01Q0

21 l 1
2q2!@ udP1̃~q!u21udP2̃~q!u2#

1 1
2 ~ t2Q01Q0

21 l 1
2q2!@ udRx̃~q!u21udRỹ~q!u2#%.

~15!

It will be noticed in the above that we have dropped the
contributions from thel 2 gradient term. In doing so we are
making the so-called one-constant approximation, equivalent
to assuming that the three Frank elastic constants, for splay,
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bend, and twist, are equal to each other.@The expression of
Eq. ~4! is already somewhat approximate in that it has only
two elastic constants.#

The motivation for eliminating thel 2 term, in addition to
reducing the number of parameters in the theory, is that the
presence of this term can make the calculation of the fluc-
tuations in the nematic phase much more difficult. With the
l 2 term retained there would be terms in Eq.~15! deriving
from an expression 1

2 l 2qaQabQbgqg in the Fourier-
transformed free energy. If the scattering wave vectorq is
strictly in thez direction this gives14 l 2q

2( 43 Q̃
21R̃x

21R̃ y
2), a

diagonal expression that causes no problems. If, however,
the wave vectorq makes an arbitrary angle with respect to
the director, so thatq andn each single out a specific spatial
direction, terms involving cross products of theQ̃, P̃’s and
R̃’s will appear in Eq. ~15! and these quantities will no
longer be normal modes. Although we can still calculate
their mean-square fluctuations, the results are much more
complex than when simple equipartion can be applied. In
Sec. V B we in fact show how to deal with one of these cross
terms, which cannot be avoided in that case since the director
and the applied field are in different directions. But for the
present we will avoid such complications since they tend to
obscure the physical content of the results and do not, as far
as we can tell, lead to any new interesting physics. In fact, all
of our major results following this section will be given for
the simplest case of the hydrodynamic orq50 limit, where
the gradient terms have no effect anyhow.

Now we use the solutions of Eq.~11! to evaluate the
coefficients appearing in Eq.~15! and then the equipartition
theorem to find the thermal averages of the fluctuations of
the five modes. Fort.2

9, the isotropic phase, we find

^udQ̃~q!u2&5^udP1̃~q!u2&5^udP2̃~q!u2&5^udRx̃~q!u2&

5^udRỹ~q!u2&5
kBT

t1 l 1
2q2

, ~16!

while for t,2
9, thenematic phase, we obtain

^udQ̃~q!u2&5
2kBT

124t1A124t12l 1
2q2

, ~17a!

^udP1̃~q!u2&5^udP2̃~q!u2&5
2kBT

3~11A124t !12l 1
2q2

,

~17b!

^udRx̃~q!u2&5^udRỹ~q!u2&5
kBT

l 1
2q2

. ~17c!

The results for the isotropic phase are well known
@15,16,19#, but those for the nematic phase, to the best of our
knowledge, are new and deserve comment.

First of all, we see that the twoR modes within the nem-
atic phase do indeed have theq22 dependence expected for
director fluctuations. The equation~10! that gives the equi-
librium value of Q ensures that the coefficients of theR
terms in Eq.~15! will vanish whenh50 except for theq2

parts. This illustrates an important advantage of the approach
we are using: by treating all five components of the order

parameter on an equal footing and using a free-energy ex-
pression that is fully rotationally invariant, it is guaranteed
that symmetry will be respected and that all those modes that
should be Goldstone modes will be.

The above equations reveal an interesting relationship be-
tween the isotropic scattering and that due to director fluc-
tuations. The latter have the strength pretransitional critical
scattering of the isotropic phase@Eq. ~16!# would have if it
could reach the effective critical point~t50!. Thus the large
scattering exhibited by a nematic liquid crystal can in a sense
be thought of as a type of critical opalescence that exists not
just at the critical point but throughout the entire nematic
phase. How large the director scattering is compared to the
largest pretransitional scattering of the isotropic phase can be
assessed by taking the ratio of Eq.~17c! to Eq. ~16! evalu-
ated at the transition temperaturet5 2

9. This ratio is, of
course, dependent upon wavelength and scattering angle
through q and is also material dependent throughl 1. For
thermotropic compoundsl 1 is typically of the order of 100 Å
and so for visible light scattered at about 90° the director
scattering turns out to be about four times larger than the
largest pretransitional scattering. In lyotropic systems it turns
out that this ratio can be much closer to unity@13# and the
two types of scattering may be comparable at the phase tran-
sition. In Fig. 2 we graph the results of Eqs.~16! and ~17!,
measured in units ofkBT, using an arbitrarily chosen value
for l 1

2q2 of 0.4 that is roughly midway between typical ther-
motropic and lyotropic behaviors.

In Fig. 3 we plot theinverseof the expressions of Eqs.
~16! and~17!, measured in units of 1/kBT, versus the reduced
temperaturet. This corresponds to the most common way of
representing light-scattering results and shows immediately
the linear divergence of the scattered light in the isotropic
phase. At the same time the negative curvature of theQ
curve in the nematic phase shows clearly that the suscepti-
bility exponentg8 is less than 1, as discussed earlier. The
results in this figure are shown for theq50 limit so that we
can extrapolate the isotropic linear behavior to obtainT*
directly. For comparison purposes we will express all of our

FIG. 2. Average square fluctuations of the order parameter com-
ponents~in units of kBT! at the ordinary nematic-isotropic transi-
tion, which occurs at a reduced temperaturet52

9. For this plot a
value of l 1

2q250.4 has been used.
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results from now on in thisq50 limit. Then, in the cases
where the transition is second order, we will see that at least
one of these curves, associated with a diverging susceptibil-
ity, will go to zero. Furthermore, any true Goldstone modes,
such as theR modes in this case, will be represented by
curves having zero value throughout the symmetry-broken
phase.

The degeneracy of the five modes in the isotropic phase as
seen in Fig. 3 would be removed somewhat if we had re-
tained thel 2 gradient term and assume a value ofqÞ0. There
would then be a slight splitting, with the twoP modes fluc-
tuating the most~least! for l 2.0 ~,0! and theQ mode the
least~most!. There would be no other obvious effects from
the inclusion of thel 2 term.

In the nematic phase the twoP modes are degenerate, as
are the twoR modes. The least scattering is from theP
modes, which follow a temperature dependence@Eq. ~17b!#
like that of the order parameter@Eq. ~11b!#. TheQ fluctua-
tions @Eq. ~17a!# have the same temperature dependence as
the susceptibility@Eq. ~12b!#, showing that this is the mode
that comes closest to ‘‘going critical.’’ Somewhat surpris-
ingly, and unlike that of theP andR modes, the fluctuations
of theQ mode are not discontinuous through the transition
~although the temperature derivative is! even though the
transition is first order.

The applicability of these formulas to both the nematic
and isotropic phases has already been partially established by
the experiments of McClymer and Keyes@13,14#, which, in
the terminology of the present paper, usedzx andxx polar-
izations to study the scattered intensities. In both cases the
isotropic phase could be fit by Eq.~16!, as was already
known from many previous experiments. Then, using the
parameterst andl determined by these isotropic data andno
other adjustable parameters, they were able to fit the results
of the measurements in the nematic phase, which had never
been obtained before. For thezx case a fit to Eq.~17c! for
the nematic was verified. The scattering forxx polarization
geometry, as discussed in Sec. II A, should be given by a
sum of Eqs.~17a! and ~17b! in the nematic phase, and this
was also confirmed.

IV. THE FIELD-INDUCED UNIAXIAL-UNIAXIAL
CRITICAL POINT

In the presence of an applied field the isotropic symmetry
of the high temperature phase is broken and we have a
uniaxial phase, a ‘‘paranematic,’’ one might say. Forxa
positive~h.0! theQ order parameter component is positive
in both the nematic and the paranematic and at sufficiently
high field these two like symmetry phases merge at a critical
point. The location of this critical point can be found most
readily from Eq.~10!, by finding the point at which both the
first and second derivatives oft with respect toQ vanish.
This procedure yields the critical point parameters@7,8#
h5 1

27, t5
1
3, andQ51

3.
To find the mode fluctuations for arbitrary values ofh and

t, one must solve Eq.~10! numerically forQ, which is then
used to evaluate the coefficients of Eq.~15!, and then use
equipartition as before. Approximate analytical expressions
can be found by expanding about any point, such as the
critical point, but in general numerical solutions must be ob-
tained. Results for the critical fieldh5 1

27 are illustrated in
Fig. 4 and for twice the critical field in Fig. 5.

Since there is no transition whatsoever forh in excess of
the critical field, the high- and low-temperature results must
somehow join smoothly onto each other. In this manner one
could have surmised that when the field is applied the five-
fold mode degeneracy of the isotropic phase must split into
one single and two twofold modes as we already have in the
nematic phase. Furthermore, one thus also expects that in the
high-temperature region the field will cause theQ and R
branches in Figs. 4 and 5 to curve downward and theP
branch to curve upward. In other words, in the high-
temperature region the field initiallyenhancestheQ andR
fluctuations butdiminishestheP fluctuations. In fact, theQ
fluctuations are enhanced to the point that they actually di-
verge~for q50! at the critical point; theQ mode is the mode
that goes critical in this case. If one increases the field to
values larger than the critical, the fluctuations eventually de-
crease in magnitude. Therefore, looking for a maximum in
the scattering from theQ or R modes as a function of field
would be a good way of locating the critical region.

FIG. 3. Inverse of the average square fluctuations of the order
parameter components in the vicinity of the ordinary nematic-
isotropic transition. Here and in all the following figures showing
fluctuations theq50 limit is assumed and the ordinate is in units of
1/kBT.

FIG. 4. Inverse of the average square fluctuations of the order
parameter components forq50 in the vicinity of the field-induced
nematic-paranematic critical point. The critical point is att51

3 and
h5

1
27. Inset: enlargement of the critical region.
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Since this phase transition taking place in the presence of
a field is not a symmetry-breaking transition anymore, there
are no longer any Goldstone modes. Thus theR fluctuations
are now found to befinite in the low-temperature phase. This
is the well-known quenching of director fluctuations by an
external field@1#. As can be seen in the figures, this quench-
ing is not very effective even at the relatively large fields
needed to reach the critical region; the director fluctuations
in the low-temperature phase remain dominant except for a
narrow temperature range just below the critical temperature
near where theQ fluctuations diverge. At any given fixed
temperature belowt52

9, the fluctuations of theQ and P
modes are quenched by the field as well, but this is also a
rather weak effect.

The functional form of the divergence of theQ fluctua-
tions on the approach to the critical point is particularly in-
teresting. The inset of Fig. 4 reveals that this inverse suscep-
tibility has a cusp at the critical temperature, indicating a
critical exponent less than 1. It is a simple matter to expand
about the critical point and show that theQ fluctuations in
fact diverge likeudt u22/3, wheredt is the temperature differ-
ence from the critical temperaturet51

3.
This unusual exponent of23 is a consequence of the par-

ticular path that we have chosen to approach the critical
point. It turns out that the van der Waals mean-field theory
also predicts this type of divergence for the density fluctua-
tions if one were to approach the liquid-gas critical point
along the critical isobar, analogous to the constanth field
path we have used here. In both cases the path is oblique to
the line of phase transitions that culminate in the critical
point and in such cases, according to the geometric picture of
Griffiths and Wheeler@20#, the susceptibility diverges with
the exponent 121/d andnot the more usual exponentg. In
order to measure a divergence with exponentg, one has to
follow a path of constant order parameter. While it is a rela-
tively simple matter to follow such a path in the liquid-gas
case, i.e., an isochore, it is rather impractical to do so in the
case of the nematic liquid crystal. We show in Fig. 6 the
phase diagram illustrating these two different kinds of paths.

Although 121/d is equal to23 in the mean-field case where

d53, it is expected to have a somewhat different value at the
paranematic-nematic critical point when one takes fluctua-
tion effects into account. In that case one expects three-
dimensional~d53! Ising-like exponents@n, the number of
components having diverging fluctuations at this transition,
equals 1 since there are no transverse Goldstone modes# and
thusd'5, leading to 121/d'0.8, somewhat larger than the
mean-field result of23, but still significantly less than 1. The
P andR fluctuations follow cube root dependences about the
critical temperature, namelŷdP2&

21' 10
9 28(dt)1/3/34/3 and

^dR2&21' 1
91(dt)1/3/34/3.

V. THE FIELD-INDUCED UNIAXIAL-BIAXIAL
TRANSITION

A. Order parameters and phase diagram

When the coupling constantxa is negative~h,0! the
paranematic induced at higher temperatures by a field along
the z direction has anegativeorder parameterQ and is a
phase in which the molecules prefer to pointaway fromthe
symmetry direction rather than along it. Upon cooling
through the phase transition temperature the molecules spon-
taneously orient along a new direction perpendicular to the
field, which we will shall take to be thex direction. This new
ordering is characterized by an additional order parameterP1
and the nematic liquid crystal is thus biaxial or, perhaps
more accurately, ‘‘parabiaxial.’’ For weak fields thex axis
may be thought of as the ‘‘real’’ or primary director andP1
as the primary order parameter. Thez axis is then a second-
ary director, a direction of slight breaking of the circular
symmetry about thex axis. At larger fields, however, where
the biaxiality is strong, the distinction between primary and
secondary directors is less meaningful.

The nature of the phase transition is greatly altered by
having a negative rather than a positive anisotropy. There
can no longer be a critical point, since the high- and low-
temperature phases now havedifferent symmetries, but the
transition between these two phases can change from being
first order at low fields to second order at high fields. The
point where this changeover takes place is a tricritical point
and its location can be determined by examining the free-

FIG. 5. Inverse of the average square fluctuations of the order
parameter components forq50 in the supercritical region above the
field-induced nematic-paranematic critical point. Here a reduced
field of h5

2
27, twice the critical field, has been assumed.

FIG. 6. h-t phase diagram for the nematic-paranematic transi-
tion. The solid point represents the field-induced critical point. The
dotted line indicates the path assumed for the results shown in Fig.
4, the dashed line the path needed to obtain ‘‘conventional’’ critical
exponents.
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energy density of Eq.~8! for the case of the biaxial nematic
where we have nonzero values for bothQ and P1 order
parameters, namely,

F5 1
2 t~Q

21P1
2!2 1

3Q
31QP1

21 1
4 ~Q21P1

2!22hQ. ~18!

Minimization of this free-energy density expression with re-
spect toP1 yields two possibilities.

First, there is the solution whereP150, which describes
the high-temperature side of the transition, that is, the
uniaxial phase. Subsequent minimization with respect toQ
then gives

05tQ2Q21Q31uhu, ~19!

which is the same as Eq.~10! except that we have in this case
replaced2h by the absolute value ofh to remind ourselves
that h,0. For hÞ0 this is solved numerically for the equi-
librium values ofQ0.

Second, Eq.~18!, minimized with respect toP1, also has
the solution

P1
252t22Q2Q2, ~20!

which describes the low-temperature side of the transition,
the biaxial phase. Substituting Eq.~20! into Eq. ~18! and
then minimizing with respect toQ yields a relation that can
be solved analytically forQ ~from now on we drop the ‘‘o’’
subscript from the equilibrium values!:

Q52 1
42 1

4A124~h1t !. ~21!

This, in turn, can be used in Eq.~20! to obtain the equilib-
rium values ofP1:

P1
252

3

4
t1

3

8
1
h

4
1
3

8
A124~h1t !. ~22!

It is then an easy matter to show that the transition becomes
second order at large fields@9# and that the coordinates of the
tricritical point are given byh52 3

16 and t5
7
16. Furthermore,

the line of second-order transitions for fields larger than the
tricritical value is given by

t52A2
h

3
1
h

3
. ~23!

The phase diagram is shown schematically in Fig. 7.

B. Calculation of the Fluctuations

When Q and P1 are both nonzero and fluctuations are
included, Eq.~8! yields

F25 1
2 ~ t22Q13Q21P1

2!dQ212P1~11Q!dQdP1

1 1
2 ~ t12Q1Q213P1

2!dP1
21 1

2 ~ t12Q1Q21P1
2!dP2

2

1 1
2 ~ t2Q2)P11Q21P1

2!dRx
2

1 1
2 ~ t2Q1)P11Q21P1

2!dRy
2. ~24!

The coefficient of the second term, the cross term indQ and
dP1, is zero in the high-temperature phase whereP150 and
so this term causes no problems there. All five modes are

then normal modes and we may use equipartition as before
to calculate the fluctuations. The principal difference from
before is that the field now inducesnegativevalues of theQ
order parameter and so enhances the scattering from theP
fluctuations while diminishing that of theQ fluctuations. The
roles of theQ andP order parameters are thus more or less
reversed; theP fluctuations eventually go critical while those
of Q are quenched by the field at any given temperature.
This is shown in Figs. 8 and 9 for two values of the field, the
tricritical valueh52 3

16, and a representative larger negative
valueh521

3.
In the low-temperature phase, where the cross term is not

zero,dQ anddP1 are no longer normal modes and we must
use anextendedequipartition theorem to calculate the fluc-
tuations in these quantities. By this we mean that when one
has an energy expression with a cross term such as
ax21bxy1cy2, wherex andy are variables anda, b, andc
are constants, then straightforward integration gives
^x2&52ckBT/(4ac2b2) and a like expression for̂y2& with
the c anda variables interchanged. In this manner we have

FIG. 7. h-t phase diagram for the field-induced uniaxial-biaxial
nematic phase transition.~It is convenient to use2h as the ordinate
whenxa,0.! The heavy dashed line is a line of second-order tran-
sitions and the solid line a line of first-order transitions. The solid
point represents the tricritical point. The lower and upper dotted
lines indicate, respectively, the paths used in obtaining the results of
Figs. 8 and 9.

FIG. 8. Inverse of the average square fluctuations of the order
parameter components forq50 in the vicinity of the field-induced
uniaxial-biaxial tricritical point. The tricritical temperature ist5 7

16.
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obtained the results shown in Figs. 8 and 9 for the low-
temperature side of the transition.~Note that we could have
diagonalized the energy expression to find the particular lin-
ear combinations ofdQ anddP1 at each temperature thatare
normal modes, but this would be of little interest to the ex-
perimentalist who actually measures the fluctuations indQ
and dP1 regardless of whether or not they happen to be
normal modes.!

C. Discussion of results

1. The tricritical point

We can see from Fig. 8 thatP is really the primary or-
dering, as mentioned earlier. BothP modes become critical
as the transition temperature is approached from above and
likewise P1 goes critical as the phase transition is ap-
proached from below.P2 remains critical-like throughout the
low-temperature phase, showing that it is a Goldstone mode.
By expanding about the tricritical point, the exact manner in
which P1 approaches zero from the low-temperature side of
the transition can be deduced. From Eq.~22! we find P1

2

'3/4A2dt in the vicinity of this point, indicating that the
order parameter exponentb is 1

4, as expected for a tricritical
point.

The temperature behavior of theQ order parameter is of a
different form above and below the tricritical temperature.
Below it approaches its tricritical value of21

4 with a square-
root dependence:Q'2 1

42A2dt/2, according to Eq.~21!;
above it varies linearly:Q'2 1

412dt/9, as found from Eq.
~19!.

The fluctuations inP1 are given by^dP 1
2&21'216dt/3

below the transition and̂dP 1
2&21'24dt/3 above. The ratio

of these two amplitudes is 4:1, as expected for a tricritical
point. The obvious curvature of theP1 results in Fig. 8 indi-
cates that the domain over which these linear temperature
dependences apply is limited to a small region near the tric-
ritical temperature.

The two R modes, degenerate in the high-temper-
ature phase, approach the transition linearly from above:
^dRx

2&215^dRy
2&21' 3

412dt/3. Below the transition this

degeneracy is split suddenly and very strongly:^dRx
2&21

' 3
42 3

2 (2dt)1/4 and ^dRy
2&21' 3

41 3
2 (2dt)1/4. These 1

4

power laws mirror the temperature dependence of the order
parameter, which has the same critical exponent.

The behavior of theQ mode is perhaps the most unusual.
Even though the transition is continuous at the tricritical
point, the fluctuations of this mode arediscontinuous. In this
respect it behaves something like the specific heat at an or-
dinary second-order mean-field transition. But, unlike that
specific-heat behavior, which is just a simple discontinuity,
theQ fluctuationsdivergeon the low-temperature side of the
transition. Specifically, we find a square-root singularity
^dQ2&21'4A2dt below the transition and^dQ2&21

' 9
812dt/9, a linear relation, above.
One of the chief characteristics of a tricritical point is that

fluctuation effects do not cause significant departures from
the predictions of mean-field theory. Therefore, the critical
exponents, amplitude ratios, and other critical features we
have calculated here are expected to be the actual behaviors
that will be observed experimentally for this type of tricriti-
cal point. The correctness of the mean-field approach at the
tricritical point of various systems with vector order param-
eters has already been established. It will be interesting to
see whether this approach is equally valid for this five-
component tensor order parameter, particularly when some
of the predicted effects, such as theQ fluctuation behavior,
are so unconventional.

2. The line of critical points

For fields greater than the tricritical value the phase
boundary is a line of second-order transitions. Approaching
any point on this boundary is the same as approaching a
critical point. In a region close to the tricritical point there
will be a competition between the two types of critical be-
havior and a ‘‘crossover’’ from the tricritical to the critical
behavior. We consider a critical point sufficiently far from
the tricritical point that these crossover effects are not ob-
served in the temperature range of interest. Specifically, we
calculate the fluctuation effects for a field ofh521

3, which
has a critical temperature oft5 5

9 according to Eq.~23!. The
path of temperature variation is indicated by the upper dotted
line in Fig. 7. The behavior along this path should be repre-
sentative of all temperature scans sufficiently far above the
tricritical point.

Expanding about the critical point having the above pa-
rameters, we find that the primary order parameter varies as
P 1

2'23dt, indicating that the exponentb is now 1
2, as ex-

pected for a mean-field critical point. The temperature de-
pendence of theQ order parameter isQ52 1

323dt/2 below
the transition andQ'21

313dt/14 above, a linear variation in
both cases.

The behavior of the fluctuations, shown in Fig. 9, is also
quite different from what was found for the tricritical point.
The temperature variation of theP1 fluctuations, those of the
primary order parameter, are as one would expect the sus-
ceptibility to behave at a mean-field second-order transition.
There is a linear dependence on both sides:
^dP 1

2&21'218dt/7 below the transition and̂ dP 1
2&21

'9dt/7 above, and hence a 2:1 amplitude ratio as also ex-
pected. TheP2 mode, of course, continues to be a Goldstone
mode below the transition.

FIG. 9. Inverse of the average square fluctuations of the order
parameter components forq50 in the vicinity of a field-induced
uniaxial-biaxial critical point. Here a reduced field ofh52

1
3 is

assumed, corresponding to a critical temperature oft55
9.

54 5257CRITICAL AND MULTICRITICAL FLUCTUATIONS OF . . .



The twoR modes again approach the transition linearly
from above, this time aŝdRx

2&215^dRy
2&21'119dt/14.

Below the transition the two modes now follow square-root
singularities: ^dRx

2&21'123(2dt)1/2 and ^dRy
2&21

'113(2dt)1/2. These power laws once again mirror the
temperature dependence of the order parameter. It appears,
therefore, that the measurement of theRmode fluctuations is
evidently a good independent way to study the order param-
eter variation for both the critical and the tricritical situa-
tions.

The Q mode fluctuations are again discontinuous at the
transition, in spite of the otherwise continuous nature of the
transition, but now there is no singularity on the low-
temperature side. Specifically, we find^dQ2&21' 2

3212dt
below the transition and̂dQ2&21' 14

9 1dt/7 above. The tri-
critical point is therefore the only point in the entireh-t
space where theQ mode fluctuations diverge~and then only
on the low-temperature side!. Measurement of theseQ fluc-
tuations then should be a good way to experimentally search
for the tricritical point.

VI. THE SPONTANEOUS „ZERO-FIELD …

UNIAXIAL-BIAXIAL TRANSITION

A. Free energy and calculation of order parameters

In the absence of any applied field at all, a uniaxial nem-
atic liquid crystal may condense into a biaxial nematic if the
temperature is lowered far enough@2#. To account for such a
phenomenon within the context of Landau–de Gennes theory
it is necessary to carry out the free-energy expansion to sixth
order. That is, to the expression of Eq.~4! one adds the fifth-
and two sixth-order terms:

F516[D~QabQba!~QsmQmnQns!1E~QabQbgQga!2

1E8~QabQba!3. ~25!

The fifth-orderD term gives an asymmetry between positive
and negative values of the order parameterQ, as is needed to
reproduce the type of skewed phase diagram seen in some
experiments. But this term does not give rise to biaxiality
and, to the contrary, tends to suppress it as likewise does the
E8 term @1,16#. To simplify the following discussion we will
reduce the number of free parameters by setting theseD and
E8 coefficients equal to zero while retaining theE term, all
that is really necessary to obtain a biaxial phase. Performing
the same scaling of variables as we did in obtaining Eq.~5!,
we obtain:

F5 1
2 tQabQba2A2

3QabQbgQga1 1
4 ~QabQba!2

1e~QabQbgQga!2. ~26!

In the above we have omitted the gradient and external field
terms, not of interest to us at the moment, and have defined
a new dimensionless variablee[EB2/C3.

Now, as in Sec. V, we look for the equilibrium minima of
Eq. ~26! that have only theQ andP1 order parameters non-
zero. That is, we look for the minima of

F5 1
2 t~Q

21P1
2!2 1

3Q
31QP1

21 1
4 ~Q21P1

2!2

1 3
2e~ 1

3Q
32QP1

2!2. ~27!

Minimizing this equation with respect toP1 yields

P1~ t12Q1Q222eQ4!1P1
3~116eQ2!50, ~28!

which may be solved forP1 to be substituted back into Eq.
~27!, which is, in turn, minimized with respect toQ. In this
manner we~numerically! find the equilibrium values ofQ
and P1 for both the uniaxial and the biaxial phases. The
uniaxial solution to Eq.~28! i.e., P150, becomes unstable
when the expression in the first set of parentheses ceases to
be positive; this signals the~second-order! transition to the
biaxial phase

t12Q1Q222eQ450. ~29!

Also, within the uniaxial phase,Q must satisfy the equation

t2Q1Q21eQ450. ~30!

Putting these last two equations together tells us that the
uniaxial-biaxial transition takes place when the reduced tem-
peraturet and the reduced sixth-order coefficiente are re-
lated byt52e22/3, and at this transition the order parameter
Q will be given byQ5A2t.

B. Calculation of the fluctuations

Now, as we have done to obtain Eq.~24!, we expand
about the local minimum to obtain the harmonic free energy
for the fluctuationsdQab . The results are similar to those of
Eq. ~24!, but more involved because of the sixth-order term:

F25 1
2 ~ t22Q13Q21P1

215eQ413eP1
4212eQ2P1

2!dQ2

12P1~11Q16eQP1
224eQ3!dQdP11

1
2 ~ t12Q

1Q213P1
2118eQ2P1

222eQ4!dP1
21 1

2 ~ t12Q1Q2

1P1
216eQ2P1

222eQ4!dP2
21 1

2 ~ t2Q2)P11Q2

1P1
21eQ41)eQ3P123eQ2P1

223)ePQ1
3!dRx

2

1 1
2 ~ t2Q1)P11Q21P1

21eQ42)eQ3P1

23eQ2P1
213)eQP1

3!dRy
2. ~31!

Once again there is adQdP1 cross term and so we must use
the extended equipartition theorem, as we did in Sec. V B, to
evaluate the fluctuations ofQ andP1 in the biaxial phase.
Since the equations for the equilibrium values are now of
higher algebraic order, almost all results must now be ob-
tained numerically.

C. Discussion of results

The fluctuations are now not only a function of the re-
duced temperaturet, but also ofe, the reduced sixth-order
coefficient. Different values ofe produce qualitatively simi-
lar results for the fluctuations. Therefore, we first present
representative results calculated fore51 and then briefly
comment on some of the effects of changinge.
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The five inverse susceptibilities in both the uniaxial and
biaxial phases fore51 are plotted in Fig. 10. We do not
include results for the isotropic phase, since they are identi-
cal to those of Fig. 3 except for the fact that the transition
temperature is shifted slightly downward when the sixth-
order term is included. Note that uniaxial results are also
similar to those of Fig. 3 very near the transition to the iso-
tropic phase, but then deviate substantially as the tempera-
ture is lowered toward the transition to the biaxial phase.

From the relation for the phase boundaryt52e22/3,
given in Sec. V, we see that the uniaxial-biaxial transition
takes place at a reduced temperaturet521 when the reduced
sixth-order coefficiente51. Below this temperatureP2 be-
comes a new Goldstone mode. Detection of the fluctuations
of this third Goldstone mode by light scattering provides
another independent way in which one can prove the exist-
ence of a purported biaxial nematic phase.

TheP1 fluctuations are found to diverge linearly on both
sides of the transition, but with an amplitude that is twice as
large on the high-temperature side as on the low, which is
standard behavior for a second-order, mean-field phase tran-
sition. Since it is the two-component set ofP parameters that
order, it is expected on theoretical grounds that this transition
should fall into then52, d53 universality class. Conse-
quently, if one can get close enough to the transition to ex-
perience strong fluctuation effects, one should measure ex-
ponentsg5g8'1.3 for the divergence of the fluctuations
rather than the linear mean-field behavior. The amplitude
ratio would likewise be modified from its mean-field result
by the critical fluctuations.

The Q fluctuations are here again discontinuous at the
transition in spite of its otherwise continuous nature. In this
case, however, there is no hint of any singular behavior on
either side of the transition as there was for the field-induced
uniaxial-biaxial transition at the tricritical point in Sec. V.

Perhaps the most interesting of all is the behavior of theP
fluctuations in the region between the two transitions. The
inverse susceptibilitŷ dP2&21 rises on cooling from the
isotropic-nematic transition, reaches a maximum, and then

falls as it approaches the uniaxial-biaxial transition, where it
goes to zero. This general trend could have been anticipated,
but what is surprising is that the maximum is so far removed
from the uniaxial-biaxial transition. The appearance of such
a maximum allows one to predict that a biaxial phase prob-
ably lies at lower temperatures while one is still far removed
from it. To some extent this feature is dependent upon the
specific value ofe that we have chosen. Ife is made very
small, the maximum moves downward in temperature but no
farther than the midpoint between the two phase transitions.
We show this trend in Fig. 11, where we have plotted
^dP2&21 versus reduced temperaturet8[t/e22/3 for three
widely different values ofe. We conclude that if there is a
tendency to form a biaxial phase at a lower temperature,
even lower than one might be able to reach before some
other phase forms instead, one should be able to detect this
incipient transition without having to go more than halfway
toward it.

The occurrence of thermodynamically stable biaxial nem-
atic phases is rare. There are numerous examples of biaxial
shaped molecules, and of mixtures of rod and plate shaped
molecules, having uniaxial nematic phases, that might be
expected to form a biaxial nematics upon cooling but do not.
It would be useful to measure the temperature dependence of
the biaxial fluctuations in the nematic phases of some of
these systems to see if the light scattering reveals any ten-
dency to form a lower temperature biaxial phase. The
nematic–smectic-C transition is another system where such
studies could prove enlightening, particularly in the vicinity
of the nematic–smectic-A–smectic-C multicritical point
where a biaxial nematic has been predicted@21# but never
seen.

VII. THE LANDAU MULTICRITICAL POINT

The appearance of a field-free uniaxial-biaxial nematic
phase transition, of the type discussed in the preceding sec-
tion, is usually linked to the presence of a nearby Landau
point. This point is a special type of multicritical point, dif-

FIG. 10. Inverse of the average square fluctuations of the order
parameter components forq50 in the vicinity of the spontaneous
~zero-field! uniaxial-biaxial transition. Here a reduced sixth-order
coefficient ofe51 has been assumed, resulting in a uniaxial-biaxial
transition temperature oft521.

FIG. 11. Inverse of the average square fluctuations of theP
order parameter components forq50 in the vicinity of the sponta-
neous ~zero-field! uniaxial-biaxial transition. Three different re-
duced sixth-order coefficients ofe have been assumed, each corre-
sponding to the same reduced uniaxial-biaxial transition
temperaturet8, defined ast8[t/e22/3.
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ferent from the other types of critical points discussed so far,
whose properties will now be discussed separately.

A. Free energy and phase diagrams

The Landau point is defined by the simultaneous vanish-
ing of the quadratic coefficientA and the cubic coefficientB
in the free-energy expression of Eq.~4!. It is in the vicinity
of this point that one is most likely to find a biaxial nematic
phase. Two different types of phases diagrams are possible.
One has a biaxial ‘‘wedge’’ sandwiched between two
uniaxial phases of opposite signs, while the other has just the
two uniaxial phases separated by a line of first-order transi-
tions @1,16#. Both types of phase diagrams have been found
experimentally@4#. Whether or not the biaxial wedge appears
depends upon the values of the fifth- and sixth-order coeffi-
cients. In the specific model we have been considering,
where the coefficientsD andE8 are assumed to be zero, the
biaxial phase appears whenE.0, while the phase diagram
having no biaxial region is found forE<0. The following
discussion will be restricted to this simplified model. The
phase diagrams, usingA andB as the independent variables,
are illustrated schematically in Fig. 12.

Most of the phase transitions shown in these two phase
diagrams, such as the isotropic-uniaxial and uniaxial-biaxial
transitions, have already been discussed in previous sections.
Therefore, in this section we consider only those transitions

that are new, such as the uniaxial-uniaxial transitions appear-
ing in Fig. 12~a! and those transitions involving an approach
to the Landau point itself, one of which is indicated by the
dashed line in Fig. 12~b!.

B. Calculation of the fluctuations and discussion of results

All of these special types of transitions associated with
the Landau point have eitherB approaching zero or elseB
held at zero whileA approaches zero. Therefore, if we are to
use the results of the previous sections, such as Eq.~31!, for
example, to calculate the fluctuations, we must do so with
care since the variableB has been used as a scaling variable
as in t[AC/B2, etc. It would be better for the present pur-
poses to transpose the previously obtained results using a
scaled temperaturet̂[A/C ~as is usually done when there is
no cubic term in the free energy!. We also will find it con-
venient to define a scaled cubic coefficientb̂[B/C and a
scaled sixth-order coefficientê[E/C.

Because of the complexity of the equations when the
sixth-order term is retained, only numerical solutions for the
fluctuations can be obtained in general. In order to gain in-
sight into the nature of these solutions, it is useful wherever
possible to consider limiting cases that admit of analytical
solutions. These special cases will be the focus of much of
the following discussion.

1. ê5 0: The uniaxial-uniaxial transition
and the approach to the Landau point

With the above changes in notation implemented, we
have for theisotropicphase, in lieu of Eq.~16!,

^dQ̃2&5^d P̃1
2&5^d P̃2

2&5^dR̃x
2&5^dR̃y

2&5
kBT

C

1

t̂
. ~32!

Likewise, for thenematicside of the transition, in place of
Eqs.~17! we obtain

^dQ̃2&5
kBT

C

2

b̂224t̂1b̂Ab̂224t̂
, ~33a!

^d P̃1
2&5^d P̃2

2&5
kBT

C

2
3

b̂21b̂Ab̂224t̂
. ~33b!

All of these results are quoted for theq50 limit, where theR
fluctuations within the nematic phase diverge and are there-
fore not given.

In the new notation the phase boundary between the nem-
atic and isotropic phase, previously given byt5 2

9, now be-
comest̂52b̂2/9. This parabolic relation between these two
reduced variables for the phase boundary leads to a doubling
of the critical exponents if the Landau point is approached by
varying b̂ rather thant̂, as along the path indicated by the
upper dashed line in Fig. 12~a!. Thus, from Eqs.~33! we see
that both theQ andP fluctuations within the nematic phases
vary as b̂22 if t̂ is held at zero. This divergence with an
exponent of 2 is a geometrical effect@20# caused by ap-
proaching the isotropic-nematic phase transition boundary
tangentially rather than obliquely. If, however,b̂ is held at

FIG. 12. Schematic phase diagrams in the vicinity of the Landau
point when the sixth-order coefficient~a! E<0 and~b! E.0. Solid
lines mark first-order transitions, dotted lines second-order transi-
tions, and the dashed lines with arrows indicate paths discussed in
the text.
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zero andt̂ is varied, we see from Eqs.~32! and~33a! that the
Q fluctuations behave normally with linear divergences and
a 2:1 amplitude ratio as expected at an ordinary second-order
phase transition. The effects of varyingb̂, although interest-
ing, are largely of academic interest, since it will probably
not be easy to perform this variation experimentally, at least
not in a continuous fashion.

When b̂ and t̂ are both nonzero, a crossover between the
exponents of 2 and 1 is seen asb̂ is varied. This phenomenon
is illustrated in Fig. 13, where we show the inverses of theQ,
P, andR fluctuations as a function ofb̂. Whent̂ is small and
we are close to the Landau point, as in Fig. 13~a!, the qua-
dratic behavior dominates. Whent̂ is larger and we are far-
ther from the Landau point, as in Fig. 13~b!, the linear de-
pendence prevails over most of the region of interest.

It is a curious feature of this model that theP fluctuations
diverge atb̂50 even though the transition between the two
uniaxial phases is first order. This exceptional behavior can
be understood by realizing thatê50 is a special case border-
ing two rather different behaviors. Ifê were just slightly
positive, rather than zero, we would be passing through a
second-order uniaxial-biaxial transition, as in Fig. 12~b!, asb̂
goes to zero. This incipient second-order behavior is the ori-

gin of the divergence of theP fluctuations; it goes away
when ê is negative, as discussed below.

2. ê< 0: The uniaxial-uniaxial transition
and the approach to the Landau point

Although analytical solutions are not feasible in this case,
semiquantitative insights can be gained by considering the
addition of the sixth-order term as a perturbation to the
above case ofê50. This point of view is certainly valid near
the Landau point where theQ andP parameters are small.
The modifications to theQ fluctuations will be slight, as long
as ê is not too largely negative, and theQ results will still
look very much like those shown in Fig. 13. TheP1 fluctua-
tions, however, are changed substantially, particularly in the
vicinity of the uniaxial-uniaxial transition. We can see by
reference to Eq.~31!, for example, that the coefficient of the
dP1

2 term in the free energy will now have an extraêQ4 term.
Near the uniaxial-uniaxial transition~b̂50! we have
Q4;A/C; t̂2 ~as long asê is not too big! and so the net
result is that theP1 fluctuations, rather than diverging at the
first-order transition between the two uniaxial phases, will
now be given bŷ dP 1

2&'2kBT/(3Cêt̂
2) and are finite. As

the Landau point is approached, however, they once again
diverge and do so with an exponent of 2 if temperature is the
variable. TheP2 fluctuations continue to diverge at the
uniaxial-uniaxial phase boundary, much as they did in Fig.
13.

3. ê> 0: The approach to the Landau point
through the biaxial nematic region

Now we will consider the path indicated by the dashed
line in Fig. 12~b! that followsB50, t̂→0 with ê.0, so that
there is a biaxial nematic region. It turns out that analytical
solutions are possible in this case~with the cubic term ab-
sent, the quartic equation we must solve forQ is actually a
quadratic equation forQ2!. We now obtain

^dQ̃2&5
kBT

C

2219êt̂

24êt̂2
——→
ê, t̂→0

kBT

C

21

12êt̂2
, ~34a!

^d P̃1
2&5

kBT

C

221êt̂

4êt̂2
——→
ê, t̂→0

kBT

C

21

2êt̂2
. ~34b!

In this biaxial phase theP2 as well as theRx andRy modes
have diverging fluctuations. An exponent of 2 is found for
the temperature divergence of theQ andP1 fluctuations as
the Landau point is neared. This result once again has a
geometrical cause: the biaxial-uniaxial boundary is ap-
proached tangentially along this path, as may be seen in Fig.
12~b!. The ê divergence has an exponent of 1 because the
biaxial-uniaxial boundaries approach a point on the dashed
line obliquely withê→0 as the biaxial wedge squeezes in on
this line from the two sides.

Renormalization group calculations have been carried out
for the vicinity of the Landau point withê50 and it has been
found that when fluctuation effects are important the critical
exponents should be those appropriate to ann55, d53 sys-
tem @22#. This result makes sense since, as we saw in Sec.
VII B 1, the Q mode goes critical at the Landau point with

FIG. 13. Inverse of the average square fluctuations of the order
parameter components forq50 in the vicinity of the first-order
uniaxial-uniaxial phase transition corresponding to the lower
dashed line of Fig. 12~a!. Reduced temperatures of~a! t̂520.1 and
~b! t̂521 have been assumed.
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all four other modes behaving like Goldstone modes. How-
ever, as already noted, the case ofê50 is special and some-
what pathological. The situations withê.0 and ê,0 are
somewhat different in that two modes,Q and P1 become
critical with the other three modes having diverging fluctua-
tions. It is not known at this time what effects, if any, this
distinction might have on the predictions for the fluctuation
dominated critical behavior whenêÞ0.

VIII. SUMMARY AND CONCLUSIONS

We have calculated the fluctuations of all five components
of the orientational order parameter of a nematic liquid crys-
tal in a wide variety of circumstances involving several types
of critical and multicritical points. The predicted behaviors
have been more varied and interesting than one might have
imagined at the outset, particularly if one is used to thinking
of fluctuations as consisting of just director modes. The
study of liquid-crystal phase transitions using a variety of
polarization geometries designed to probe the behaviors of
all five order parameter fluctuations can be a very useful way
of studying the complex critical phenomena associated with
these systems. We have in mind here not only the orienta-
tional phase transitions discussed in this paper, but also tran-

sitions involving positional ordering where the coupling be-
tween the smectic and the~tensor! nematic order parameters
has the potential to provide light-scattering results more in-
teresting and informative than has previously been realized.
The extension of these methods to smectic systems is an area
we hope to report on in the near future.

The inclusion of chirality into these discussions is another
obvious area for further studies. But the study of the blue
phases has taught us, among other things, that the seemingly
trivial step of removing inversion symmetry can in fact lead
to a whole host of new phenomena and complexities. We do
not, therefore, expect the extrapolation of these methods to
chiral cases to be a simple one, but we anticipate that it will
be rewarded with a richness of new and interesting results.

The Landau–de Gennes free-energy expansion that has
formed the basis of our analyses permits a self-consistent
check of its applicability: the Ginsburg criterion. Once the
spectrum of fluctuations has been determined, as it has here,
it is relatively straightforward~although possibly quite in-
volved! to assess the importance of higher-order terms that
would invalidate the harmonic approximation used in the
mean-field approach. In the interests of time and space, we
have elected not to do this analysis, but this too could be a
profitable area for future studies.
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