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Critical and multicritical fluctuations of nematic liquid crystals
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The strong light scattering of a nematic liquid crystal is not necessarily only the result of director fluctua-
tions. The director modes are just two of the five fluctuating modes of a nematic liquid crystal. The other three
modes may also show strong scattering, comparable to or even larger than those of the director modes, in the
vicinities of the certain critical and multicritical points obtainable in a nematic liquid crystal. We calculate in
a unified approach and within a mean-field approximation the strength of the fluctuations of all five modes in
a variety of circumstances, including critical, tricritical, and Landau multicritical points. Important information
regarding these phase transitions can be learned by observing all five 1®H@63-651X96)12211-X

PACS numbe(s): 61.30.Eb, 64.70.Md, 83.70.Jr

[. INTRODUCTION tricritical point followed by a line of critical point§9].
The experimental realization of many of these critical or

The macroscopic order parameter associated with the ormulticritical points has come about only fairly recently
entational ordering of a liquid crystal is normally taken to be[4,10-12. Likewise, the observation of critical opalescence
the anisotropic part of the dielectric tenddf. This tensor, within the nematic phase, as opposed to just within the iso-
being traceless and symmetric, has five independent comptropic phase, is fairly neWwl3,14. It seemed timely, there-
nents, all of which fluctuate about their equilibrium values atfore, to undertake the systematic development of a theory of
finite temperature. Usually, however, one focuses on th¢he fluctuations of a nematic liquid crystal in all these cir-
fluctuations of just two of these five components, the twocumstances. In an earlier work it was shown how the light
transverse director modes. In the case of light scattering thgcattering could be calculated for two different geometries
contributions from the director fluctuations do indeed tend taappropriate to a specific experimdii3]. Here we give the
dominate those of the other modes. However, there are wellgeneral methods of doing these calculations and apply them
known polarization rules for the light scattering from direc- to the vicinities of all the above types of critical and multi-
tor modes that may be employed to block the director scateritical points. Although we will make some comments on
tering and then allow one to observe the scattering from théight scattering, our emphasis in this paper will be more on
other three modes. There is valuable information to behe zero-wave-vector limit of the critical phenomena.
gained from the study of these other modes, particularly in The method we use is an application of the Landau—de
the vicinity of phase transitions where they may exhibit pre-Gennes free energy, which has already been so successful in
transitional fluctuations comparable in magnitude to those oflescribing the fluctuations of the five modes in the isotropic
the director modes. Such transitions include, for exampleliquid on its approach toward the nematic phasgls,16.
changes in the type of orientational ordering as well as tranWe extend these calculations to include the fluctuations
sitions from a nematic or even a chiral nematic liquid crystalwithin the nematic phases, as well as the effects of external
to one of the various smectic phases. fields upon the fluctuations in both the isotropic and the nem-

This paper will present the results of calculations of theatic regions. In our approach the nematic order parameter is
temperature dependences of the fluctuation strengths of always treated as a five component object. The wide variety
five modes at various transitions that involve changes in hoef critical phenomena displayed by nematic liquid crystals is
mogeneous orientational order only. We exclude from then fact attributable to this multicomponent nature of the order
present discussion, therefore, the very interesting but morparameter. One of the main advantages of the present ap-
complicated chiral nematic phases and blue phases, as wglioach is that it allows one to treat the fluctuations of the
as all of the smectic phases. We will consider transitionsrarious modes on an equal footing and thus compare their
from one type of nematic phase to another or from an isorelative importance.
tropic phase to a nematic phase. There are several such tran-The behaviors of the five different modes prove to be
sitions, related to the fact that there are nematic phases ojuite varied and interesting. For any given transition there
three different types: uniaxial positive, uniaxial negative, andare usually three different types of mode behavior. First of
biaxial [1,2,3. Associated with the various transitions are all, there will be at least one mode that “goes critical,” that
different types of critical or multicritical points. For ex- is, one whose associated light scatteringjat0 diverges at
ample, there can be two lines of critical points separating théhe phase transition. From this divergence one extracts a
biaxial phase from the two types of uniaxial nematic phasesritical exponent for a susceptibilialthough in one impor-
with these lines merging and terminating at a special multitant case we shall see that a different exponent is megsured
critical point also known as a Landau poift,3,4]. Other  Second, there will usually be one or more Goldstone modes,
types of critical points are found in the presence of an apwhose scattering aj=0 diverges not only at the phase tran-
plied field; depending upon the sign of the coupling constantsition, but throughout the entire condensed phase as well. An
one can have either an ordinary critical pdibt-8] or else a  applied field can quench the fluctuations of such a mode, but,
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as we shall see, this suppression is normally not very effecvariations ofP, in this case would represent fluctuations in
tive even for rather large fields. Third, from the remaining ofthe degree of biaxiality, while changesm3 would be due to
the five modes, there will be one or more that are neithefluctuations of the new director. The roles Bf andP, are
Goldstone nor critical modes and whose scattering does negversed if the symmetry-breaking direction is at 45° toxhe
diverge. Although one might suppose that the behavior obr y axis; P, is then maximal, whileP, is zero. For an
these modes are unremarkable, they often are just as integrhitrary orientation of the new symmetry breaking direction,
esting as the other modes, if not more so. Some show thgoth p, and P, are nonzero. In this work we shall assume
most rapid changes of all the modes on the approach to @atp=0 andy=0, so thatP,;=0 andP,=0 on the average.
critical or multicritical point and provide the best means of \y/e useR’s for the remaining two order parameter com-

!ocatilanghsu_ch p?lnts._:_)thlers _e>§h|b|||t singu(aut r;on(]cljl\{erg-_ ponents partly to preserve alphabetical order, but also to re-
:(%itioen:IVé?irtigalae;“olggnfsmgljci gg't?]%tog‘ethg cge?(rig'::annecmind us that they represerdtationsof the uniaxial director.
P ' ff this director should tilt slightly in the direction, R, will
curve. : ) ; -~
become nonzero to first order in the tilt angle and, similarly,

In the next section we outline our methods and notationR b ; it t dt is. (The P
The following several sections discuss individually the vari-"Y ecomes nonzero for a uit towar heaxis. (The
components will also become nonzero, but only to second

ous types of critical and multicritical phase transitions that . , - . )
one finds in a nematic liquid crystal and the temperaturé)rder in the tilt) Variations in theR’s therefore represent

dependences of their associated modes of fluctuation. director fluctuations. Some authors refer to BnandQ fluc-
tuations as, respectively, “transverse” and “longitudinal”
Il. OUTLINE OF NOTATION AND METHODS [18]. But since theP fluctuations also have transverse and
longitudinal senses, we prefer not to use these designations.
A. Notation Fluctuations in the above quantities are easily detected by
As is usual, we take our order parameter to be the anisdight scattering.I(q), the intensity of light with scattering
tropic part of the dielectric tensor wave vectorg, is proportional to<|ia5Qaﬁ(q)fB|2), where
. 0Q,5(q) is the g transform of theas component of the
Qup=€ap™3€yy0ap- @D order parameter of E¢2) andi , andf ; are, respectively, the

polarization vectors of the incident and scattered light
Thus, to see the mean-square fluctuationR,gfthezx or xz
component oR .5, one should haveoriented along andf
alongx or vice versa. A similar result holds f&, , with y
_ replacingx in the above. These geometries are the standard
Q O 0 P, P, O . : SO >t
1 0 - 0 P. —p. 0 way of looking at director fluctuations: with one polarization
Qup=7 Q T2 1 vector parallel to the director and the other perpendicular. If

Light scattering takes place when this quantity fluctuates
SinceQ,z is both symmetric and traceless, it has just five
independent components and can be writtefld$

6\ o 0 2Q 2\ o0 o 0 both polarization vectors are parallel to the director one will
0 0 R see fluctuations iMQ, the zz component ofQ,;. Having
1 0 0 RX 2 i oriented alongk andf alongy or vice versa is the way to
+ ‘E R R OV ' 2 see fluctuations iP,. The last two possibilities, having both
x Ry polarizers oriented along the direction or both alongy,

ives a mixed result. One then sees fluctuations in the square
of Q+ P, or of Q— P4, respectively. IfQ and P, are inde-
pendent normal modes, as they are in many of the cases
—O21p2,Lp2Lp2,p2 discussed below, then the average of the cross term is zero
QupQpa= Q7+ P+ P+ R+ R, ® and one sees the average@f+ P?in both cases. One can
where, as usual, repeated greek indices are summed over.thén extract the average Bf if the Q fluctuations have been
For the magnitudes of the five components of the ordefdependently determined. If, howevep, and P, are not
parameter we have us® Q, andR with subscripts to dis- independent normal modes, the analysis is more complex.
tinguish the components that are qualitatively similar to each
other. For a liquid crystal that is optically uniaxial with the
optic axis oriented along thedirection,Q is the usual order B. Methods
parameter indicating the optical anisotropy and Eige and To calculate the fluctuation effects we use the standard
R’s are zero on the average. Any fluctuationsQrabout its ~ Landau—de Gennes free-energy density
average value describe changes in daegreeof molecular

The normalizations are chosen such that we have a simp
form for the quadratic invariant

Ordering. F= %AQQBQBa+%LlQaﬁ,yQBa,y_l—%LZQaﬁ,ﬂQay,y
The P coefficients take on nonzero average values if the . L )

liquid crystal becomes optically biaxial. A biaxial nematic - \/;BQQBQBanfl_ 1C(QupQp4)

has another director field associated with a second

symmetry-breaking direction. If this new director makes an - \/g)(aQaﬁHaHB- 4

angley with respect to the axis, then thd® components are

given by P;=P cos2) and P,=P sin2}, where P is the

magnitudeof the biaxiality.P; is maximal andP, zero when HereH , is an external fieldmagnetic or electricand y, is

the new symmetry direction lies along either thery axis.  the anisotropic coupling constant associated with this field.
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The choice of numerical coefficients has been made so as to
simplify some of the ensuing equations. As usuAl,
is assumed to have a linear temperature dependence
A=Ay(T—T*) and all the other coefficients are treated as
constants. To obtain a more correct description of the tem-
perature variation of the order parameter throughout a wide
range of temperatures one should also assign temperature
dependences to tH& andC coefficients, but this refinement
will not affect the nature of the critical behaviors that are the
focus of the following sections and so will not be included.
One important exception to the above, which will be dis- g, 1. Schematic of the free-energy surface at a temperature
cussed separately in Sec. VI, is the vicinity of the Landauyst pelow the first-order isotropic-nematic phase transition. The
multicritical point where the coefficier® changes sign. dotted lines are harmonic approximations to the two local minima,
In order to reduce the number of relevant parameters age higher left-hand one corresponding to a metastable isotropic
much as possible, it is convenient to perform a scaling obhase at this temperature and the right-hand one to a thermody-
variables such tha®,,, is measured in units oB/C, F in namically stable nematic phase. The abscissa represents five coor-
units of B4/C3, and)(aH2 in units of B3/C2. This leads to the dinates, the independent components of @g; order parameter
reduced expression tensor.

F=1t +12 +3113 . ;
71QupQpat 211Qup ey 212Qup s Qury will therefore be useful at the start to have the coordinate
~-V2Q, A 1(Q,50Q4.)%— V2 sHH . axes aligned with the principle axes as well as with any
\/;Q #Q87 Qe+ (QuaQpe) \/;X&Q b b external fields so that as many components of order param-
) eter as possible will be identically zero. For this reason, in

In the above we have defined a reduced temperatur((j)erivmg Eq.(8) above we have assumed thé is along the
t=AC/B? and coherence lengthd where (42 Z direction, with the result that it only couples to ti@
=L,,C/B% 12 L component. For further convenience we have also introduced

The standard method for computing the fluctuations in thé® reduced fielth defined byh E)XaHZ- . _
isotropic phase in the absence of a field, wh@g; is zero, Next, to find 7, we putQ s back into Eq.(8) with the
is to retain only the quadratic terms of E@) and to apply ~ 9radient terms restored and expand to second order in the
the equipartition theorem to this harmonic approximation. InéQ.s'S. Because of the gradient terms, it is easiest to find
the nematic phase and/or in the presence of a field, wher@Xpressions for the average fluctuations of the Fourier trans-
Q. is not zero, we likewise employ a harmonic approxima- forms of thesQ,z's, which are the quantities actually mea-
tion, although the procedure is somewhat more complexsured by light-scattering experiments.

First we must findQ ao[gE<QaB>, the average value @4, In the next several sections we illustrate the application of
and then expand Ed5) out to second order iBQ,z, the these methods to the varieties of critical points mentioned in
deviations Oanﬁ from this average. Thus we have the Introduction. First, however, in Sec. Il we study a more
familiar case: the ordinary isotropic-nematic transition in the
Qaﬁ(r):QaOB)Jr 8Q (1) (6) absence of any field. As it is well known, this transition is
first order, but weakly so, and has some features resembling
and those of second-order transitions. It will be especially inter-
esting to see how those features evolve toward full-fledged
]:(Qaﬁ(r)):]:(Qikoﬁ))+f2(5Qaﬁ(r))’ @) criticgl or multicritical behavior as we approach the vario%s

where %, is second order in théQ%;s, all linear terms types of critical points discussed in Secs. IV-VII.

being absent since~ evaluated atQ,; is by definition a
minimum with respect to variations @Q ;. This procedure
In order to findQ 'Y we first substitute Eq2) into Eq.(5),

e - : A. Review of the phase transition properties
omitting the gradient terms, to obtain

and “critical” exponents

F=31(Q*+ P+ P3+Ri+R) — Q%+ Q(PI+P%) _For the uniaxial nematic aligned along thexis (that is,
L s o o 5 with P;=P,=R,=R,=0) Eg. (8) reduces to the simpler
—2Q(R+R})) — 3 P1(R—R}) —V3P,RR, and more familiar free-energy expression
+ Q%+ P{+P3+ R +R))?—hQ, ®) F=1tQ2-1Q%+1Q*-hQ. 9

and then we must find th@, P’s, andR’s that minimizeF.

Since the free energy is fully rotationally invariant, there Before calculating the strengths of the fluctuations of the five
will, in general, be an infinite number of solutions to this modes, we first review and summarize the predictions stem-
minimization problem corresponding to all the possible waysming from the free-energy expression of Eg), particularly

of orienting the coordinate axes with respect to the principlefor the field-free case. Although some of these results already
axes of the order parameter tensor. To simplify the analysis @ppear several places in the literature, others do not to our
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knowledge. Minimization of this equation gives the follow- heat of Eq.(13b) has a constant plus an inverse square root
ing cubic equation that must be solved to obtyg, the divergence(implying a critical exponent ofx'=3). At the

equilibrium value ofQ: transition the singular part is only three times larger than the
by 3 constant background. The situation is similar for the suscep-
0=tQ—-Q"+Q>—h. (10 tibility. Equation (12b) has a linear plus a square-root diver-

gence, the latter of which becomes the dominant singularity
at T** (implying a critical exponent ofy=3). But at the
transition there is again this three-to-one ratio between these
two contributions making it difficult to clearly discern the

For the field-free caséh=0) there is a first-order phase tran-
sition at a temperaturé., corresponding to a reduced tem-
peraturet=3, and the relevant solutions to E{.0) are

0 =2 (113 y=13 exponent. Finally, from Eq11b) we see that the order
Qo(t)= ’ ° parameter has a square-root dependence M&ay corre-
F(1+1-41), t<3. (11  sponding to a critical exponemg=3. However, the order

parameter does not go to zero Bt*, but to a finite or
The susceptibilities above and below this transition are givemackground value of.
by All in all, the critical behavior of this transition is uncon-
ventional to say the least. With the results quoted above it is
- t>2 (129  clear that the scaling relationsa+28+y=2 and
Q t o' +2B+y' =2 are satisfied, but the hyperscaling equations
o ()= 2 a=a' andy=v" are not. Perhaps we should not expect any
) e " ;
—  t<? (12b) more of a first-order transition where, it could be argued,
1-4t+J1-4t scaling ideas need not apply in the first case. However, as we
. ) . . ) have already stressed, this first-order transition can be
The sp_ecm_c heatin suitably reduced unifsobtained from brought through a variety of means to several different types
Eq. (9) is given by of second-order transitions where scaling expectatioost
then hold. One of the things that will be interesting to see in

0, t>3 138 o . :
e next several sections is how the unconventional behavior
Ch(t)=19 1 1 of this first-order transition evolves into the conventional as
5 (1+ ) t<3. (13b  the various fields that produce true critical behavior are ap-
V1-4t plied.
The mean-field predictions of Eq&l1)—(13) contain singu-
larities that imply a certain set of critical exponents for this B. Calculation of the fluctuations

transition. Ther_e IS not Cr't'ca.‘l b_eh?“"or in the usual SENS€ e return now to the calculation of the formulas for the
since the full singular behavior is interrupted by the first-

order transition. Also related to this first-order character isfluctuatlons of the five modes, which, as we shall see, mimic

the fact that the effective critical temperature, as well as thgg]i(rastrsvseuIst,tsjbc;];itli?esgc:([)es;(ilr\?) fér Eg)e a%rglizlea?gr%as”lt;estb
set of critical exponents, are different on the two sides of thesecond order inQ .Then ags. discussed previousl p we
phase transition. aB- ' p Y,

We review first the behavior as seen from the isotropicSW'tCh to momentum representation by expressing the fluc-

side of the transition. From Eq123, we see that the sus- tuations of the order parameter in terms of its Fourier ampli-
T tudes

ceptibility diverges at=0 or, to be more accurate, would

diverge at this point if it were not interceded by a first-order —~ _

transition att=% (i.e., T=T,). Thus the effective critical 8Qap(N) =2 9Q.p(@)e +c.c. (14)

temperature seen from above the transitior® or, equiva- g

lently, T=T*. Since the susceptibility divergdmearly as

this point is approached, the mean-field prediction for thelhus, forF;, found by integrating the fluctuation part of the

corresponding critical exponent &=1. This is probably the ~free-energy density over all space, vig,= [ 7>dr, we ob-

best known of the mean-field predictions and is followedtain

quite accurately by nearly all measurements made to date.

We also see from Eq12g that =0 since there is no pre-

dicted divergence in the specific heat abdye (We do not Fo=2, {3(t—2Qu+3Q32+12¢?)|30(q)|?

consider here the inclusion of fluctuation effects that could 4

produce an exponeni>0, in better agreement with experi- +%(t+2Qo+QS+Ifqz)[lfgp”l(q)ler|3P§(q)|2]
ment)

As seen from the nematic side of the transition, the sus- +3(t— Qo+ Q5+ 120)[ | TR @) |2+ 3Ry (@) |]}-
ceptibility and the specific heat would diverge tat;, ac- 1
cording to Eqs(12b) and (13b). The effective critical tem- (15)

perature, which we call** , is therefore closer td, (t=3)

than isT* (t=0) by a factor of 8. Nonetheless, because oflt will be noticed in the above that we have dropped the
the presence of “background” terms, it is harder to see thecontributions from thd, gradient term. In doing so we are
critical anomalies in the nematic than in the isotropic phasemaking the so-called one-constant approximation, equivalent
where there is no such background. For example, the specifio assuming that the three Frank elastic constants, for splay,
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bend, and twist, are equal to each ot@he expression of
Eq. (4) is already somewhat approximate in that it has only
two elastic constantk.

The motivation for eliminating thé, term, in addition to
reducing the number of parameters in the theory, is that the
presence of this term can make the calculation of the fluc-
tuations in the nematic phase much more difficult. With the
I, term retained there would be terms in E5) deriving
from an expression%IzanaBQﬁyq7 in the Fourier-
transformed free energy. If the scattering wave vectas
strictly in thez direction this gives;1,q*(3Q°+R5+R?), a
diagonal expression that causes no problems. If, however,
the wave vectoig makes an arbitrary angle with respect to
the director, so tha andn each single out a specific spatial 0 1
direction, terms involving cross products of te P’s and
R’'s will appear in Eq.(15 and these quantities will no t
longer be normal modes. Although we can still calculate
their mean-square fluctuations, the results are much more FIG. 2. Average square fluctuations of the order parameter com-
complex than when simple equipartion can be applied. Irponents(in units of kgT) at the ordinary nematic-isotropic transi-
Sec. V B we in fact show how to deal with one of these crosgion, which occurs at a reduced temperattres. For this plot a
terms, which cannot be avoided in that case since the directoglue ofl g°=0.4 has been used.
and the applied field are in different directions. But for the

present we will a\_/oid such complications since they tend toparameter on an equal footing and using a free-energy ex-
obscure the physical content of the results and do not, as f ression that is fully rotationally invariant, it is guaranteed

as we can tell, lead to any new mterestmg physms. !n fact, a hat symmetry will be respected and that all those modes that
of our major results following this section W|II_ b_e given for should be Goldstone modes will be.

the S'mp.IeSt case of the hydrodynamicep0 limit, where The above equations reveal an interesting relationship be-
the gradient terms have no effect anyhow. tween the isotropic scattering and that due to director fluc-

NQV\.' we use th? sc_)lutions of Ed1]) to evalgate .the tuations. The latter have the strength pretransitional critical
coefficients appearing in E415) and then the equipartition icattering of the isotropic pha$Eq. (16)] would have if it

theofem to find the ”;erma_' averages of the fI_uctuations %ould reach the effective critical poiit=0). Thus the large
the five modes. For>s, theisotropic phasewe find scattering exhibited by a nematic liquid crystal can in a sense
2N _ 2 _ 2N _ 2 be thought of as a type of critical opalescence that exists not
(3R %) =([3PuI*) = ([aP2(@)|) =([Rc(@)[*) just at the critical point but throughout the entire nematic
kgT phase. How large the director scattering is compared to the
m, (16) largest pretransitional scattering of the isotropic phase can be
! assessed by taking the ratio of EG4.70 to Eq. (16) evalu-
ated at the transition temperatute=2. This ratio is, of
course, dependent upon wavelength and scattering angle
throughq and is also material dependent throuigh For

25
L]
1

<(8Qup)

=(|3Ry(q)|?) =

while for t<3, the nematic phasewe obtain

(|33(q)|?)= 2ksT ot (173  thermotropic compounds is typically of the order of 100 A
1—-4t+y1-4t+2159° and so for visible light scattered at about 90° the director
scattering turns out to be about four times larger than the
2kgT largest pretransitional scattering. In lyotropic systems it turns
(|3P1(a) %)y =(|3P(q)[?) = L out that this ratio can be much closer to uriy3] and the
3(1+v1-4t)+2Iq two types of scattering may be comparable at the phase tran-
(179 sition. In Fig. 2 we graph the results of Eq46) and (17),
T meaguged in units kg T, using an arbitrarily chosen value
2\ _ 2 _ Bl for I 79° of 0.4 that is roughly midway between typical ther-
(3R () %) =([FRy(a)[*) = 19g%" (179 motropic and lyotropic behaviors.

In Fig. 3 we plot theinverseof the expressions of Egs.

The results for the isotropic phase are well known(16) and(17), measured in units of R4T, versus the reduced
[15,16,19, but those for the nematic phase, to the best of outemperature. This corresponds to the most common way of

knowledge, are new and deserve comment.

First of all, we see that the twlR modes within the nem-

representing light-scattering results and shows immediately
the linear divergence of the scattered light in the isotropic

atic phase do indeed have the? dependence expected for phase. At the same time the negative curvature ofGhe

director fluctuations. The equatiqi0) that gives the equi-
librium value of Q ensures that the coefficients of tie
terms in Eq.(15) will vanish whenh=0 except for theg?

curve in the nematic phase shows clearly that the suscepti-
bility exponenty' is less than 1, as discussed earlier. The
results in this figure are shown for tlge=0 limit so that we

parts. This illustrates an important advantage of the approactan extrapolate the isotropic linear behavior to obtain
we are using: by treating all five components of the ordedirectly. For comparison purposes we will express all of our
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FIG. 4. Inverse of the average square fluctuations of the order
FIG. 3. Inverse of the average square fluctuations of the ordeparameter components fgr=0 in the vicinity of the field-induced
parameter components in the vicinity of the ordinary nematic-nematic-paranematic critical point. The critical point istat; and
isotropic transition. Here and in all the following figures showing h=2 |nset: enlargement of the critical region.
fluctuations theg=0 limit is assumed and the ordinate is in units of

kT IV. THE FIELD-INDUCED UNIAXIAL-UNIAXIAL

results from now on in thigj=0 limit. Then, in the cases CRITICAL POINT
where the transition is second order, we will see that at least In th f lied field the isotropi t
one of these curves, associated with a diverging susceptibil- N the presence of an applied e € Isotropic Symmetry
ity, will go to zero. Furthermore, any true Goldstone modes,Of .th(.e high tempe‘r‘ature pha;e ,',S b“’"ef‘ and we have a
such as theR modes in this case, will be represented byUniaxial phase, a “paranematic,” one might say. Pey
curves having zero value throughout the symmetry-broke®0Sitive(h>0) the Q order parameter component is positive
phase. in both the nematic and the paranematic and at sufficiently

The degeneracy of the five modes in the isotropic phase d3gh field these two like symmetry phases merge at a critical
seen in F|g 3 would be removed somewhat if we had re.pOint. The location of this critical point can be found most
tained thd , gradient term and assume a valugef0. There  readily from Eq.(10), by finding the point at which both the
would then be a slight splitting, with the tw® modes fluc- first and second derivatives ofwith respect toQ vanish.
tuating the mostleas) for 1,>0 (<0) and theQ mode the This procedure yields the critical point paramet¢rsg]
least(mosd. There would be no other obvious effects from h==, t=% andQ=3.
the inclusion of thd, term. To find the mode fluctuations for arbitrary valueshoénd

In the nematic phase the tw® modes are degenerate, ast, one must solve Eq10) numerically forQ, which is then
are the twoR modes. The least scattering is from tRe used to evaluate the coefficients of E5), and then use
modes, which follow a temperature dependefteq. (17b)]  equipartition as before. Approximate analytical expressions
like that of the order paramet¢Eq. (11b)]. The Q fluctua- can be found by expanding about any point, such as the
tions[Eqg. (179] have the same temperature dependence asritical point, but in general numerical solutions must be ob-
the susceptibilityf Eq. (12b)], showing that this is the mode tained. Results for the critical field=2% are illustrated in
that comes closest to “going critical.” Somewhat surpris- Fig. 4 and for twice the critical field in Fig. 5.
ingly, and unlike that of th& andR modes, the fluctuations Since there is no transition whatsoever fomn excess of
of the Q mode are not discontinuous through the transitionthe critical field, the high- and low-temperature results must
(although the temperature derivative) isven though the somehow join smoothly onto each other. In this manner one
transition is first order. could have surmised that when the field is applied the five-

The applicability of these formulas to both the nematicfold mode degeneracy of the isotropic phase must split into
and isotropic phases has already been partially established loye single and two twofold modes as we already have in the
the experiments of McClymer and Keygk3,14], which, in  nematic phase. Furthermore, one thus also expects that in the
the terminology of the present paper, usedandxx polar-  high-temperature region the field will cause t@eand R
izations to study the scattered intensities. In both cases theranches in Figs. 4 and 5 to curve downward and Fhe
isotropic phase could be fit by Eq16), as was already branch to curve upward. In other words, in the high-
known from many previous experiments. Then, using théemperature region the field initiallgnhanceghe Q andR
parameters$ andl determined by these isotropic data aral  fluctuations budiminishesthe P fluctuations. In fact, th€)
other adjustable parameterthey were able to fit the results fluctuations are enhanced to the point that they actually di-
of the measurements in the nematic phase, which had neveerge(for q=0) at the critical point; th& mode is the mode
been obtained before. For the case a fit to Eq(170 for  that goes critical in this case. If one increases the field to
the nematic was verified. The scattering fot polarization  values larger than the critical, the fluctuations eventually de-
geometry, as discussed in Sec. Il A, should be given by &rease in magnitude. Therefore, looking for a maximum in
sum of Egs.(173 and(17b in the nematic phase, and this the scattering from th€ or R modes as a function of field
was also confirmed. would be a good way of locating the critical region.
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tion. The solid point represents the field-induced critical point. The

FIG. 5. Inverse of the average square fluctuations of the ordeglotted line indicates the path assumed for the results shown in Fig.
parameter components fqe=0 in the supercritical region above the 4, the dashed line the path needed to obtain “conventional” critical
field-induced nematic-paranematic critical point. Here a reducegXponents.
field of h=2%, twice the critical field, has been assumed.
6=3, it is expected to have a somewhat different value at the
cRaranematic-nematic critical point when one takes fluctua-
dion effects into account. In that case one expects three-
dimensional(d=3) Ising-like exponentgn, the number of

are now found to béinite in the low-temperature phase. This components having diverging fluctuations at this transition,
equals 1 since there are no transverse Goldstone rhadds

is the well-known quenching of director fluctuations by an s . .
external field 1]. As can be seen in the figures, this quench-thus &~5, leading to 1_1/570'8’ s_qmewhat larger than the
mean-field result of, but still significantly less than 1. The

ing is not very effective even at the relatively large fields X
needed to reach the critical region; the director fluctuationd” @ndR fluctuations follow cube [olot Ejoependeq/%ealgbout the
ritical temperature, namelygP,) ~ “~ 3 —8(st) /3" and

in the low-temperature phase remain dominant except for g 11 13m0

narrow temperature range just below the critical temperatur OR) =5+ (8) T3

near where the fluctuations diverge. At any given fixed

temperature below=3, the fluctuations of theQ and P V. THE FIELD-INDUCED UNIAXIAL-BIAXIAL
modes are quenched by the field as well, but this is also a TRANSITION

rather weak effect.

The functional form of the divergence of tl fluctua-
tions on the approach to the critical point is particularly in- When the coupling constang, is negative(h<0) the
teresting. The inset of Fig. 4 reveals that this inverse suscegaranematic induced at higher temperatures by a field along
tibility has a cusp at the critical temperature, indicating athe z direction has anegativeorder paramete and is a
critical exponent less than 1. It is a simple matter to expangbhase in which the molecules prefer to poamtay fromthe
about the critical point and show that tig fluctuations in  symmetry direction rather than along it. Upon cooling
fact diverge like|st|~??, whereét is the temperature differ- through the phase transition temperature the molecules spon-
ence from the critical temperatute=3. taneously orient along a new direction perpendicular to the

This unusual exponent df is a consequence of the par- field, which we will shall take to be the direction. This new
ticular path that we have chosen to approach the criticabrdering is characterized by an additional order paraniefer
point. It turns out that the van der Waals mean-field theoryand the nematic liquid crystal is thus biaxial or, perhaps
also predicts this type of divergence for the density fluctuaimore accurately, “parabiaxial.” For weak fields tlxeaxis
tions if one were to approach the liquid-gas critical pointmay be thought of as the “real” or primary director aRg
along the critical isobar, analogous to the constarfield  as the primary order parameter. Thaxis is then a second-
path we have used here. In both cases the path is oblique &y director, a direction of slight breaking of the circular
the line of phase transitions that culminate in the criticalsymmetry about the axis. At larger fields, however, where
point and in such cases, according to the geometric picture dhe biaxiality is strong, the distinction between primary and
Griffiths and Wheelef20], the susceptibility diverges with secondary directors is less meaningful.
the exponent +1/§ and not the more usual exponent In The nature of the phase transition is greatly altered by
order to measure a divergence with expongnone has to having a negative rather than a positive anisotropy. There
follow a path of constant order parameter. While it is a rela-can no longer be a critical point, since the high- and low-
tively simple matter to follow such a path in the liquid-gas temperature phases now hagiéferent symmetries, but the
case, i.e., an isochore, it is rather impractical to do so in théransition between these two phases can change from being
case of the nematic liquid crystal. We show in Fig. 6 thefirst order at low fields to second order at high fields. The
phase diagram illustrating these two different kinds of pathspoint where this changeover takes place is a tricritical point

Although 1—1/8is equal to? in the mean-field case where and its location can be determined by examining the free-

Since this phase transition taking place in the presence
a field is not a symmetry-breaking transition anymore, ther
are no longer any Goldstone modes. ThusRhuctuations

A. Order parameters and phase diagram
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energy density of Eq8) for the case of the biaxial nematic

where we have nonzero values for baghand P, order -h )
parameters, namely, ’
13 critical pa[h ............... /., ...........
F=3(Q*+P)—3Q%+QP{+1(Q*+PD*~hQ. (18
U

Minimization of this free-energy density expression with re- /’ o
spect toP, yields two possibilities. e R AR sricritical path

First, there is the solution whei@,=0, which describes biaxial siaial
the high-temperature side of the transition, that is, the hematic nematic
uniaxial phase Subsequent minimization with respect@ | :
then gives 0 2 L ™t

0=tQ—Q?*+Q3*+|h, (19

FIG. 7. h-t phase diagram for the field-induced uniaxial-biaxial
which is the same as E(L0) except that we have in this case hematic phase transitiofit is convenient to use-h as the ordinate
replaced—h by the absolute value df to remind ourselves when x,<0.) The heavy dashed line is a line of second-order tran-

that h<0. For h#0 this is solved numerically for the equi- Sitions and the solid line a line of first-order transitions. The solid
librium values ofQ,. point represents the tricritical point. The lower and upper dotted

Second, Eq(18), minimized with respect t®,, also has lines indicate, respectively, the paths used in obtaining the results of
the solution Figs. 8 and 9.

p§= -t—-20Q0-Q?, (200  then normal modes and we may use equipartition as before
to calculate the fluctuations. The principal difference from
which describes the low-temperature side of the transitionpefore is that the field now induceggativevalues of theQ
the biaxial phase Substituting Eq.(20) into Eq. (18) and  order parameter and so enhances the scattering fror® the
then minimizing with respect tQ yields a relation that can fluctuations while diminishing that of th@ fluctuations. The

be solved analytically fo@ (from now on we drop the 6” roles of theQ andP order parameters are thus more or less
subscript from the equilibrium valugs reversed; thé fluctuations eventually go critical while those
of Q are quenched by the field at any given temperature.
Q=—7—2V1-4(h+u). (2)  This is shown in Figs. 8 and 9 for two values of the field, the
I _3 : :
This, in turn, can be used in EO) to obtain the equilib- mclr't'%a_l \iallueh— 15 and a representative larger negative
rium values ofP;: valuen=-s. ,
- In the low-temperature phase, where the cross term is not
3 3 h 3 zero,6Q and 6P, are no longer normal modes and we must
sz 2 t+ §+ 7 + 3 V1—4(h+t). (22 use anextendedequipartition theorem to calculate the fluc-

tuations in these quantities. By this we mean that when one

It is then an easy matter to show that the transition becomg33$ an energy expression with a cross term such as
second order at large fiel@ig] and that the coordinates of the X 1 bxy+cy*, wherex andy are variables and, b, andc
tricritical point are given byn=— < andt=+. Furthermore, &re constants, then straightforward integration gives

2\ _ 2 H H 2 :
the line of second-order transitions for fields larger than thdx")=2CkgT/(4ac—b?) and a like expression fay®) with
tricritical value is given by the c anda variables interchanged. In this manner we have

t=2 h+ n 23
“2N73t @3 -
The phase diagram is shown schematically in Fig. 7.
B. Calculation of the Fluctuations 'N/\
When Q and P, are both nonzero and fluctuations are 25‘? ]
included, Eq.(8) yields %/’,
Fr=3(t—2Q+3Q%+ P3)5Q%+ 2P, (1+ Q) 5Q4P,
+3(t+2Q+Q%+3P2) P2+ 3(t+2Q+ Q%+ P?) 6P3 07
+1(t— Q- V3P, + Q2+ P?)6R? 0 1
+3(t—Q+V3P;+Q%+P}) 5RL. (24) t
The coefficient of the second term, the cross tervi@hand FIG. 8. Inverse of the average square fluctuations of the order

6P, is zero in the high-temperature phase whefes0 and  parameter components fgr=0 in the vicinity of the field-induced
so this term causes no problems there. All five modes areniaxial-biaxial tricritical point. The tricritical temperaturetis .
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degeneracy is split suddenly and very stronglgR2) ™!
~3-3(-o)"™ and (sR7) '~3+3(—o)™ These ;
power laws mirror the temperature dependence of the order
parameter, which has the same critical exponent.

The behavior of th€ mode is perhaps the most unusual.

-1

A
By Even though the transition is continuous at the tricritical
2035 2 point, the fluctuations of this mode agléscontinuousin this

‘% respect it behaves something like the specific heat at an or-

dinary second-order mean-field transition. But, unlike that
specific-heat behavior, which is just a simple discontinuity,
the Q fluctuationsdivergeon the low-temperature side of the
transition. Specifically, we find a square-root singularity
. . (6Q?)"1~4.-6t below the transition and(5Q?) !
0 ! ~24+26t/9, a linear relation, above.
t One of the chief characteristics of a tricritical point is that
fluctuation effects do not cause significant departures from
FIG. 9. Inverse of the average square fluctuations of the ordethe predictions of mean-field theory. Therefore, the critical
parameter components for=0 in the vicinity of a field-induced exponents, amplitude ratios, and other critical features we
uniaxial-biaxial critical point. Here a reduced field bf=—3 is have calculated here are expected to be the actual behaviors
assumed, corresponding to a critical temperature=§. that will be observed experimentally for this type of tricriti-
cal point. The correctness of the mean-field approach at the
obtained the results shown in Figs. 8 and 9 for the low-ricritical point of various systems with vector order param-
temperature side of the transitiofNote that we could have eters has already been established. It will be interesting to
diagonalized the energy expression to find the particular linsee whether this approach is equally valid for this five-
ear combinations 0dQ and 6P, at each temperature thate  component tensor order parameter, particularly when some
normal modes, but this would be of little interest to the ex-of the predicted effects, such as t@efluctuation behavior,
perimentalist who actually measures the fluctuationd@  are so unconventional.
and 6P, regardless of whether or not they happen to be
normal modes. 2. The line of critical points

For fields greater than the tricritical value the phase
C. Discussion of results boundary is a line of second-order transitions. Approaching
any point on this boundary is the same as approaching a
critical point. In a region close to the tricritical point there

We can see from Fig. 8 tha is really the primary or- || be a competition between the two types of critical be-
dering, as mentioned earlier. Bothmodes become critical havior and a “crossover” from the tricritical to the critical
as the transition temperature is approached from above angbhavior. We consider a critical point sufficiently far from
likewise P; goes critical as the phase transition is ap-the tricritical point that these crossover effects are not ob-
proached from belowP;, remains critical-like throughout the served in the temperature range of interest. Specifically, we
low-temperature phase, showing that it is a Goldstone modea|culate the fluctuation effects for a field lof=—3%, which
By expanding about the tricritical point, the exact manner inhas 3 critical temperature of$ according to Eq(23). The
which P, approaches zero from the low-temperature side ohath of temperature variation is indicated by the upper dotted
the transition can be deduced. From E82) we find P{ Jine in Fig. 7. The behavior along this path should be repre-
~3/4\— 6t in the vicinity of this point, indicating that the sentative of all temperature scans sufficiently far above the
order parameter exponepgtis ;, as expected for a tricritical tricritical point.
point. Expanding about the critical point having the above pa-

The temperature behavior of tigorder parameter is of a rameters, we find that the primary order parameter varies as
different form above and below the tricritical temperature.P #~ — 34t, indicating that the exponer is now 3, as ex-
Below it approaches its tricritical value efz with a square- pected for a mean-field critical point. The temperature de-
root dependence®~ — — \/— t/2, according to Eq(21); pendence of th order parameter iQ = — 1 —35t/2 below
above it varies linearlyQ~ — 1+ 26t/9, as found from Eq. the transition an@~—1+36t/14 above, a linear variation in
(19). both cases.

The fluctuations inP, are given by(sP%) 1~ —166t/3 The behavior of the fluctuations, shown in Fig. 9, is also
below the transition andsP 3) '~ —46t/3 above. The ratio  quite different from what was found for the tricritical point.
of these two amplitudes is 4:1, as expected for a tricriticalThe temperature variation of th®, fluctuations, those of the
point. The obvious curvature of the, results in Fig. 8 indi-  primary order parameter, are as one would expect the sus-
cates that the domain over which these linear temperatureeptibility to behave at a mean-field second-order transition.
dependences apply is limited to a small region near the tricThere is a linear dependence on both sides:
ritical temperature. (6P%)"1~—186t/7 below the transition and(sP3)~!

The two R modes, degenerate in the high-temper-~96t/7 above, and hence a 2:1 amplitude ratio as also ex-
ature phase, approach the transition linearly from abovepected. Thé?, mode, of course, continues to be a Goldstone
(6RZ)"t=(sR7) " '~3+26t/3. Below the transition this mode below the transition.

1. The tricritical point
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The two R modes again approach the transition linearly F=1t(Q%+ pi) -10Q%+0Q pi+ Q%+ pi)Z
from above, this time agsR%) '=(SR7)“'~1+94t/14.
Below the transition the two modes now follow square-root +32e(3Q%—QP??2, (27)

singularities:  (sRZ)"'~1-3(-at)"? and (sRZ)*
~1+3(—6t)Y2 These power laws once again mirror the Minimizing this equation with respect 8, yields
temperature dependence of the order parameter. It appears,
therefore, that the measurement of Bhenode fluctuations is P, (t+2Q+Q?~2eQ") +PJ(1+6eQ?)=0, (28
evidently a good independent way to study the order param- . _ .
eter variation for both the critical and the tricritical situa- Which may be solved foP, to be substituted back into Eq.
tions. 27), which is, in turn, minimized with respect @. In this

The Q mode fluctuations are again discontinuous at thdn@nner we(numerically find the equilibrium values 0@
transition, in spite of the otherwise continuous nature of thend P for both the uniaxial and the biaxial phases. The
transition, but now there is no singularity on the low- Uniaxial solution to Eq(28) i.e., P;=0, becomes unstable
temperature side. Specifically, we fir{@Q2>71~§_125t when thg expression in the first set of parenthgses ceases to
below the transition anchQz)‘l%lg—“ﬂL St/7 above. The tri- bg ppsmve; this signals thésecond-ordgrtransition to the
critical point is therefore the only point in the entitet ~ Piaxial phase
space where th® mode fluctuations diverg@and then only 2 _
on the low-temperature sigleMeasurement of thes@ fluc- t+2Q+Q°-2eQ'=0. (29

tuations then should be a good way to experimentally searcjauso, within the uniaxial phase&) must satisfy the equation
for the tricritical point.

t—Q+Q%*+eQ*=0. (30)
VI. THE SPONTANEOUS (ZERO-FIELD ) Putting these last two equations together tells us that the
UNIAXIAL-BIAXIAL TRANSITION uniaxial-biaxial transition takes place when the reduced tem-

peraturet and the reduced sixth-order coefficiemtare re-
lated byt=—e~?3 and at this transition the order parameter
In the absence of any applied field at all, a uniaxial nem-Q will be given by Q= /—t.

atic liquid crystal may condense into a biaxial nematic if the
temperature is lowered far enoufl. To account for such a
phenomenon within the context of Landau—de Gennes theory )
it is necessary to carry out the free-energy expansion to sixth Now, as we have done to obtain E@4), we expand
order. That is, to the expression of Eg) one adds the fifth- about the local minimum to obtain the harmonic free energy
and two sixth-order terms: for the fluctuationssQ 5. The results are similar to those of

Eq. (24), but more involved because of the sixth-order term:
~7:5+GE D(QaﬁQBa)(Qa’,uQ,quyo’) + E(QaﬁQByQ'ya)z

+E'(QupQpa)™. (25

A. Free energy and calculation of order parameters

B. Calculation of the fluctuations

Fr=3%(t—2Q+3Q%+ P2+ 5eQ*+3e P} — 122 QPP?) 5Q?
+2P(1+Q+6eQP,—4eQ%) Q5P+ 3(t+2Q

The fifth-orderD term gives an asymmetry between positive +Q%+3P2+18e QPP —2e Q%) 6P+ 3 (t+2Q+Q?
and negative values of the order param€leas is needed to 5 B P )
reproduce the type of skewed phase diagram seen in some ~ +P1t6eQ?P1—2eQ")oP3+3(t-Q—v3P1+Q

experiments. But this term does not give rise to biaxiality 1 P2+ e0t+1/3e 03P, — 3e O?P2— 3v3e POP) SR2
and, to the contrary, tends to suppress it as likewise does the r+eQ+vieQP, QP 3 Qi) X

E’ term[1,16]. To simplify the following discussion we will +1(t—-Q+v3P+ Q%+ P2+eQ*—v3eQ’P,
reduce the number of free parameters by setting tBeaad 5 )
E’ coefficients equal to zero while retaining tEeterm, all —3eQ?Pi+3v3eQP}) SR’ (39

that is really necessary to obtain a biaxial phase. Performing ) _
the same scaling of variables as we did in obtaining(By.  ©Once again there is 8Q 6P, cross term and so we must use
we obtain: the extended equipartition theorem, as we did in Sec. V B, to

evaluate the fluctuations @ and P, in the biaxial phase.
Since the equations for the equilibrium values are now of

F= %tQa,eQﬁa— \/gQaBQBva“L%(QaBQBa)Z hi_gher algebr_aic order, almost all results must now be ob-
tained numerically.
+e(QaﬁQﬂyQ'ya)2' (26)

C. Discussion of results

In the above we have omitted the gradient and external field The fluctuations are now not only a function of the re-

terms, not of interest to us at the moment, and have defineduced temperaturg but also ofe, the reduced sixth-order

a new dimensionless variabte= EB?/C3, coefficient. Different values o# produce qualitatively simi-
Now, as in Sec. V, we look for the equilibrium minima of lar results for the fluctuations. Therefore, we first present

Eq. (26) that have only th& and P, order parameters non- representative results calculated fex=1 and then briefly

zero. That is, we look for the minima of comment on some of the effects of changag
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FIG. 11. Inverse of the average square fluctuations ofRhe
FIG. 10. Inverse of the average square fluctuations of the ordeorder parameter components fpr=0 in the vicinity of the sponta-
parameter components for=0 in the vicinity of the spontaneous neous (zero-field uniaxial-biaxial transition. Three different re-
(zero-field uniaxial-biaxial transition. Here a reduced sixth-order duced sixth-order coefficients efhave been assumed, each corre-
coefficient ofe=1 has been assumed, resulting in a uniaxial-biaxialsponding to the same reduced uniaxial-biaxial transition
transition temperature df=—1. temperature’, defined ag’=t/e~?".

_ The five inverse susceptibilities in both the uniaxial andfa|is as it approaches the uniaxial-biaxial transition, where it
biaxial phases foe=1 are plotted in Fig. 10. We do not goes to zero. This general trend could have been anticipated,
include results fo_r the isotropic phase, since they are |d_e_nt|but what is surprising is that the maximum is so far removed
cal to those of Fig. 3 except for the fact that the transitionfom the uniaxial-biaxial transition. The appearance of such
temperature is shifted slightly downward when the sixth-3 maximum allows one to predict that a biaxial phase prob-
order term is included. Note that uniaxial results are alsgyp|y Jies at lower temperatures while one is still far removed
similar to those of Fig. 3 very near the transition to the iSo-from it. To some extent this feature is dependent upon the
tropic phase, but then deviate substantially as the temperapecific value ofe that we have chosen.  is made very
ture is lowered toward the transition to the biaxial phase. small, the maximum moves downward in temperature but no

From the relation for the phase boundary —e™*"  farher than the midpoint between the two phase transitions.
given in Sec. V, we see that the uniaxial-biaxial transition\we show this trend in Fig. 11, where we have plotted
takes place at a reduced temperature-1 when the reduced (5P® versus reduced temperatuté=t/e~?? for three
sixth-order coefficiene=1. Below this temperatur®, be- \yigely different values of. We conclude that if there is a
comes a new Goldstone mode. Detection of the ﬂUCtuat'Onﬁendency to form a biaxial phase at a lower temperature,
of this third Goldstone mode Dby light scattering provideseyen lower than one might be able to reach before some
another independent way in which one can prove the exisisther phase forms instead, one should be able to detect this
ence of a purported biaxial nematic phase. incipient transition without having to go more than halfway

The P, fluctuations are found to diverge linearly on both (qward it.
sides of the transition, but with an amplitude that is twice as  The occurrence of thermodynamically stable biaxial nem-
large on the high-temperature side as on the low, which igtic phases is rare. There are numerous examples of biaxial
standard behavior for a second-order, mean-field phase tra@haped molecules, and of mixtures of rod and plate shaped
sition. Since it is the two-component set®fparameters that  jecyles, having uniaxial nematic phases, that might be
order, it is expected on theoretical grounds that this transitiogxpected to form a biaxial nematics upon cooling but do not.
should fall into then=2, d=3 universality class. Conse- |t ould be useful to measure the temperature dependence of
quently, if one can get close enough to the transition to eXthe piaxial fluctuations in the nematic phases of some of
perience strong fluctuation effects, one should measure expege systems to see if the light scattering reveals any ten-
ponentsy=y'~1.3 for the divergence of the fluctuations gency to form a lower temperature biaxial phase. The
rather than the linear mean-field behavior. The amplitudg,ematic—smecti€ transition is another system where such
ratio would likewise be modified from its mean-field result sydies could prove enlightening, particularly in the vicinity
by the critical fluctuations. of the nematic—smectidé—smecticC multicritical point

The Q fluctuations are here again discontinuous at thyhere a biaxial nematic has been predicfad] but never
transition in spite of its otherwise continuous nature. In thisggen

case, however, there is no hint of any singular behavior on
either side of the transition as there was for the field-induced
uniaxial-biaxial transition at the tricritical point in Sec. V.
Perhaps the most interesting of all is the behavior ofhe The appearance of a field-free uniaxial-biaxial nematic
fluctuations in the region between the two transitions. Thephase transition, of the type discussed in the preceding sec-
inverse susceptibility(6P?) ! rises on cooling from the tion, is usually linked to the presence of a nearby Landau
isotropic-nematic transition, reaches a maximum, and thepoint. This point is a special type of multicritical point, dif-

VIl. THE LANDAU MULTICRITICAL POINT
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that are new, such as the uniaxial-uniaxial transitions appear-

o | isotropic ing in Fig. 14a) and those transitions involving an approach
- to the Landau point itself, one of which is indicated by the
g — - dashed line in Fig. 1®).

negative uniaxial positive uniaxial B. Calculation of the fluctuations and discussion of results

All of these special types of transitions associated with
e a— e m the Landau point have eith@& approaching zero or eld®
held at zero whileA approaches zero. Therefore, if we are to
use the results of the previous sections, such ag®g, for
example, to calculate the fluctuations, we must do so with
(@) i care since the variabB has been used as a scaling variable
as int=AC/B?, etc. It would be better for the present pur-
poses to transpose the previously obtained results using a
A A isotropic scaled temperaturte= A/C (as is usually done when there is
no cubic term in the free energyWe also will find it con-
. venient to define a scaled cubic coefficien=B/C and a
5 scaled sixth-order coefficieg=E/C.
o Because of the complexity of the equations when the
positive uniaxial sixth-order term is retained, only numerical solutions for the
? fluctuations can be obtained in general. In order to gain in-
|
{
|
i
I

=y

negative uniaxial

sight into the nature of these solutions, it is useful wherever
possible to consider limiting cases that admit of analytical
. solutions. These special cases will be the focus of much of
biaxial the following discussion.
(b) I

1. e= 0: The uniaxial-uniaxial transition
and the approach to the Landau point

FIG. 12. Schematic phase diagrams in the vicinity of the Landau \With the above changes in notation implemented, we

point when the sixth-order coefficietd) E<0 and(b) E>0. Solid  have for theisotropic phase, in lieu of Eq(16),
lines mark first-order transitions, dotted lines second-order transi-

tions, and the dashed lines with arrows indicate paths discussed in

the text (30°) = (3%~~~ - L = (2

o
=Y

ferent from the other types of critical points discussed so far, . ) o - )
whose properties will now be discussed separately. Likewise, for thenematicside of the transition, in place of
Egs.(17) we obtain

A. Free energy and phase diagrams

kgT
The Landau point is defined by the simultaneous vanish- (5Q% = - T (333
ing of the quadratic coefficiert and the cubic coefficieri C b2—4i+b\b2-4t
in the free-energy expression of Ed). It is in the vicinity
of this point that one is most likely to find a biaxial nematic kT 2
phase. Two different types of phases diagrams are possible. (’SF%):(?F%): —_—— (33b
One has a biaxial “wedge” sandwiched between two C p2+byb2—4t

uniaxial phases of opposite signs, while the other has just the
two uniaxial phases separated by a line of first-order transiAll of these results are quoted for tige=0 limit, where theR
tions[1,16]. Both types of phase diagrams have been foundluctuations within the nematic phase diverge and are there-
experimentallff4]. Whether or not the biaxial wedge appearsfore not given.
depends upon the values of the fifth- and sixth-order coeffi- In the new notation the phase boundary between the nem-
cients. In the specific model we have been consideringatic and isqtropic phase, previously given by3, now be-
where the coefficient® andE’ are assumed to be zero, the comest=2b?/9. This parabolic relation between these two
biaxial phase appears whé&™>0, while the phase diagram reduced variables for the phase boundary leads to a doubling
having no biaxial region is found foE<0. The following  of the critical exponents if the Landau point is approached by
discussion will be restricted to this simplified model. Thevarying b rather thant, as along the path indicated by the
phase diagrams, usinlgandB as the independent variables, upper dashed line in Fig. 1&. Thus, from Egs(33) we see
are illustrated schematically in Fig. 12. that both theQ andP fluctuations within the nematic phases
Most of the phase transitions shown in these two phaseary asb™2 if t is held at zero. This divergence with an
diagrams, such as the isotropic-uniaxial and uniaxial-biaxiakxponent of 2 is a geometrical effef20] caused by ap-
transitions, have already been discussed in previous sectiorgoaching the isotropic-nematic phase trangition boundary
Therefore, in this section we consider only those transitionsangentially rather than obliquely. If, howevds,is held at
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4 gin of the divergence of th® fluctuations; it goes away
wheneé is negative, as discussed below.

Pl»Pg:,:": 2. &< 0: The uniaxial-uniaxial transition
- and the approach to the Landau point
>N ’ Although analytical solutions are not feasible in this case,
zo*i semiquantitative insights can be gained by considering the
‘% addition of the sixth-order term as a perturbation to the

above case o#=0. This point of view is certainly valid near
the Landau point where th® and P parameters are small.
The modifications to th€ fluctuations will be slight, as long
aseé is not too largely negative, and ti@ results will still
T T T look very much like those shown in Fig. 13. TRg fluctua-
tions, however, are changed substantially, particularly in the
(@) b vicinity of the uniaxial-uniaxial transition. We can see by
reference to Eq31), for example, that the coefficient of the
5P2 term in the free energy will now have an ex&@* term.
Near the uniaxial-uniaxial transitionb=0) we have
Q*~A/C~12 (as long ast is not too big and so the net
4+ result is that the?, fluctuations, rather than diverging at the
first-order transition between the two uniaxial phases, will
now be given by( 6P 2)~ —kgT/(3Cé&t?) and are finite. As
the Landau point is approached, however, they once again
diverge and do so with an exponent of 2 if temperature is the
PPy variable. TheP, fluctuations continue to diverge at the
uniaxial-uniaxial phase boundary, much as they did in Fig.
0_ """""""""""‘a""‘:“" """" ﬁ"K """" 13_

-1

25

<(8Qup)

T T T 3. &> 0: The approach to the Landau point
through the biaxial nematic region

o>

(b) Now we will consider the path indicated by the dashed

line in Fig. 12b) that followsB=0, t—0 with €>0, so that
FIG. 13. Inverse of the average square fluctuations of the ordethere is a biaxial nematic region. It turns out that analytical

parameter components far=0 in the vicinity of the first-order  splutions are possible in this caésith the cubic term ab-

uniaxial-uniaxial phase transition corresponding to the lowersent, the quartic equatlon we must solve @iis actually a

dashed line of Fig. 12). Reduced temperatures @) t=-0.1 and quadratic equation fo@ ). We now obtain

(b) t=—1 have been assumed.

zero and is varied, we see from Eq632) and (339 that the <752>_ KeT — 2+?et kB_T _% . (343
Q fluctuations behave normally with linear divergences and 24et? w0 C 126t?

a 2:1 amplitude ratio as expected at an ordinary second-order

phase transition. The effects of varyibgalthough interest- KaT — 246t KeT —1

ing, are largely of academic interest, since it will probably (“p >_ B B —. (34b)
not be easy to perform this variation experimentally, at least 4et? w0 C 26t?

not in a continuous fashion.

Whenb andt are both nonzero, a crossover between then this biaxial phase th®, as well as thek, andR, modes
exponents of 2 and 1 is seentais varied. This phenomenon have diverging fluctuations. An exponent of 2 |s found for
is illustrated in Fig. 13, where we show the inverses of@he the temperature divergence of tReand P, fluctuations as
P, andR fluctuations as a function &f. Whent is smalland the Landau point is neared. This result once again has a
we are close to the Landau point, as in Fig(é}3the qua- geometrical cause: the biaxial-uniaxial boundary is ap-
dratic behavior dominates. Wheris larger and we are far- proached tangentially along this path, as may be seen in Fig.
ther from the Landau point, as in Fig. (b3, the linear de- 12(b). The e divergence has an exponent of 1 because the
pendence prevails over most of the region of interest. biaxial-uniaxial boundaries approach a point on the dashed

It is a curious feature of this model that tRefluctuations  line obliquely withe—0 as the biaxial wedge squeezes in on
diverge atb=0 even though the transition between the twothis line from the two sides.
uniaxial phases is first order. This exceptional behavior can Renormalization group calculations have been carried out
be understood by realizing that=0 is a special case border- for the vicinity of the Landau point wite=0 and it has been
ing two rather different behaviors. & were just slightly found that when fluctuation effects are important the critical
positive, rather than zero, we would be passing through &xponents should be those appropriate tmab, d=3 sys-
second-order uniaxial-biaxial transition, as in Fig(d2asb ~ tem[22]. This result makes sense since, as we saw in Sec.
goes to zero. This incipient second-order behavior is the orivll B 1, the Q mode goes critical at the Landau point with
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all four other modes behaving like Goldstone modes. Howsitions involving positional ordering where the coupling be-
ever, as already noted, the caseeef0 is special and some- tween the smectic and thigensoj nematic order parameters
what pathological. The situations witt>0 ande<0 are has the potential to provide light-scattering results more in-
somewhat different in that two mode® and P, become teresting and informative than has previously been realized.
critical with the other three modes having diverging fluctua-The extension of these methods to smectic systems is an area
tions. It is not known at this time what effects, if any, this We hope to report on in the near future. o

distinction might have on the predictions for the fluctuation The inclusion of chirality into these discussions is another

dominated critical behavior whee-0. obvious area for further studies. But the study of the blue
phases has taught us, among other things, that the seemingly
VIIl. SUMMARY AND CONCLUSIONS trivial step of removing inversion symmetry can in fact lead

to a whole host of new phenomena and complexities. We do

We have calculated the fluctuations of all five componentsiot, therefore, expect the extrapolation of these methods to
of the orientational order parameter of a nematic liquid crys-chiral cases to be a simple one, but we anticipate that it will
tal in a wide variety of circumstances involving several typesbe rewarded with a richness of new and interesting results.
of critical and multicritical points. The predicted behaviors The Landau—de Gennes free-energy expansion that has
have been more varied and interesting than one might haviermed the basis of our analyses permits a self-consistent
imagined at the outset, particularly if one is used to thinkingcheck of its applicability: the Ginsburg criterion. Once the
of fluctuations as consisting of just director modes. Thespectrum of fluctuations has been determined, as it has here,
study of liquid-crystal phase transitions using a variety ofit is relatively straightforwardalthough possibly quite in-
polarization geometries designed to probe the behaviors ofolved) to assess the importance of higher-order terms that
all five order parameter fluctuations can be a very useful wayvould invalidate the harmonic approximation used in the
of studying the complex critical phenomena associated withmean-field approach. In the interests of time and space, we
these systems. We have in mind here not only the orientdhave elected not to do this analysis, but this too could be a
tional phase transitions discussed in this paper, but also traprofitable area for future studies.
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